首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TiO2/epoxy composite thick films containing the TiO2 powders doped with 4 and 10 vol% Nb2O5 heat treated under vacuum at 1050 and 1150 °C, were prepared by the screen printing and curing steps. The Nb2O5-doped TiO2 ceramic bulks demonstrated a higher effective dielectric constant at different densification environments, as compared with pure TiO2. The dielectric properties of the TiO2/epoxy thick films were improved if the heat-treated 4 vol% Nb2O5-doped TiO2 powder was incorporated instead of the un-doped and heat-treated 10 vol% Nb2O5-doped TiO2 powders. The disadvantage of the doped TiO2 having higher dielectric loss tangent could be minimized after its powder was properly treated and mixed with epoxy to form the TiO2/epoxy composite. A best result with the dielectric constant of 23 and the loss tangent of 0.046 was obtained for the 40 vol% TiO2/epoxy composite thick films, where the TiO2 powder was doped with 4 vol% Nb2O5 followed by calcination at 1000 °C in air and heat treatment at 1150 °C under vacuum.  相似文献   

2.
TiO2-SiO2 with various compositions prepared by the coprecipitation method and vanadia loaded on TiO2-SiO2 were investigated with respect to their physico-chemical characteristics and catalytic behavior in SCR of NO by NH3 and in the undesired oxidation of SO2 to SO3, using BET, XRD, XPS, NH3-TPD, acidity measurement by the titration method and activity test. TiO2-SiO2, compared with pure TiO2, exhibits a remarkably stronger acidity, a higher BET surface area, a lower crystallinity of anatase titania and results in allowing a good thermal stability and a higher vanadia dispersion on the support up to high loadings of 15 wt% V2O5. The SCR activity and N2 selectivity are found to be more excellent over vanadia loaded on TiO2-SiO2 with 10–20 mol% of SiO2 than over that on pure TiO2, and this is considered to be associated with highly dispersed vanadia on the supports and large amounts of NH3 adsorbed on the catalysts. With increasing SiO2 content, the remarkable activity decrease in the oxidation of SO2 to SO3, favorable for industrial SCR catalysts, was also observed, strongly depending on the existence of vanadium species of the oxidation state close to V4+ on TiO2-SiO2, while V5+ exists on TiO2, according to XPS. It is concluded that vanadia loaded on Ti-rich TiO2-SiO2 with low SiO2 content is suitable as SCR catalysts for sulfur-containing exhaust gases due to showing not only the excellent de-NOx activity but also the low SO2 oxidation performance.  相似文献   

3.
Porous zinc aluminate (ZnAl2O4) spinel nanorods were synthesized via a homogeneous co-precipitation approach followed by a heat treatment at 900 °C. The porous rod-like nanostructures not only increase the efficiency of adsorption sites, but also promote the dissociation of water adsorbed on nanorod boundaries and pore-walls. Moreover, they also provide an effective and fast channel for the transport of water vapor and liquid. Therefore, the impedance signal of the sensors based on the porous nanorods presents high sensitivity, good linearity, small hysteresis, and fast response/recovery time to humidity. Additionally, the sensors are also relatively stable to humidity for a long time. This study demonstrates that porous ZnAl2O4 nanorods are a promising platform for the construction of humidity sensors.  相似文献   

4.
采用比表面积分别为101.86 m2·g-1(A)、86.37 m2·g-1(B)和7.78(C)m2·g-1(C)的TiO_2载体,通过分步浸渍法制备V2O5-Mo O3/TiO_2(A,B,C)选择性催化还原脱硝催化剂。在空速为10 000 h-1和氨氮体积比1.0条件下,以TiO_2(A)与TiO_2(B)为载体制备的催化剂脱硝活性在反应温度窗口(350~450)℃超过90%,且具有良好的高温抗硫中毒性能和相对较小的氨气氧化率。而以TiO_2(C)为载体制备的脱硝催化剂活性温度窗口窄,在350℃时获得的最高脱硝活性仅为73%,且对NH3的氧化作用较强。利用X射线衍射、低温N2吸附-脱附、紫外-可见漫反射光谱、H2程序升温还原和NH3程序升温脱附等对载体和催化剂进行表征。结果表明,活性组分V2O5在载体TiO_2(A)上分散性良好,主要以孤立态钒氧物种形式存在,因此,以TiO_2(A)为载体制备的催化剂比表面积、氧化还原性和表面酸性等性能更优。  相似文献   

5.
The effects of the amount of Cr2O3 (0.5–4 mol%) on the microstructure and the electrical properties have been studied in a binary ZnO–0.5 mol% V2O5 system. The microstructure of the samples consists mainly of ZnO grains with ZnCr2O4 and α-Zn3(VO4)2 as the minority secondary phases. The addition of Cr2O3 is found to be effective in controlling the abnormal ZnO grain growth often found in V2O5-doped ZnO ceramic system, and a more uniform microstructure can be obtained. The varistor performance is also improved as observed from the increase in the non-linear coefficient α of the Cr2O3-doped ZnO–V2O5 samples. The α value is found to increase with the amount of Cr2O3 for up to 3 mol% Cr2O3 content. Further increase in Cr2O3 is found to cause a decrease in the α value. The highest α value of 28.9 is obtained for the ZnO–0.5 mol% V2O5–3 mol% Cr2O3 sample.  相似文献   

6.
The physico-chemical characteristics and the reactivity of sub-monolayer V2O5-WO3/TiO2 deNOx catalysts is investigated in this work by EPR, FT-IR and reactivity tests under transient conditions. EPR indicates that tetravalent vanadium ions both in magnetically isolated form and in clustered, magnetically interacting form are present over the TiO2 surface. The presence of tungsten oxide stabilizes the surface VIV and modifies the redox properties of V2O5/TiO2 samples. Ammonia adsorbs on the catalysts surface in the form of molecularly coordinated species and of ammonium ions. Upon heating, activation of ammonia via an amide species is apparent. V2O5-WO3/TiO2 catalysts exhibits higher activity than the binary V2O5/TiO2 and WO3/TiO2 reference sample. This is related to both higher redox properties and higher surface acidity of the ternary catalysts. Results suggest that the catalyst redox properties control the reactivity of the samples at low temperatures whereas the surface acidity plays an important role in the adsorption and activation of ammonia at high temperatures.  相似文献   

7.
V2O5 supported on sulfated TiO2 catalyst was investigated by using Raman and infrared spectroscopies to examine the surface structure of vanadia and the hydroxyl groups of titania along with the sulfate species on the catalyst surface. The surface structure of vanadia plays a critical role, particularly for the reduction of NO by NH3. The polymeric vanadate species on the catalyst surface is the active reaction site for this reaction system. The surface sulfate species enhanced the formation of the polymeric vanadate by reducing the available surface area of the catalyst. The formation of the polymeric vanadate species on the catalyst surface also depends on the number of hydroxyl groups on the support. Both the sulfate and the vanadate species strongly interacted with the hydroxyl groups on titania. The fewer the number of the hydroxyl sites on the catalyst surface became by increasing the calcination temperatures, the more the polymeric vanadate species formed. A model was proposed to elucidate the progressive alteration of the surface structure of vanadia by the amounts of V2O5 loadings and the sulfate species on the catalyst surface.  相似文献   

8.
Two series of catalysts, V2O5/TiO2 and modified V2O5/TiO2, were prepared with a conventional impregnation method. They were tested in the selective oxidation of toluene to benzoic acid under microwave irradiation. The reaction conditions were optimized over V2O5/TiO2. It was found that in the microwave catalytic process the optimum reactor bed temperature of the titled reaction decreases to 500 K (600 K in the conventional process). The modification of V2O5/TiO2 with MoO3, WO3, Nb2O5 or Ta2O5, which has no negative influence on the reaction in the conventional catalytic process, can greatly promote the catalytic activities in the microwave process, leading to a high yield of benzoic acid (41%). The effects of microwave electromagnetic field on the catalysts are discussed.  相似文献   

9.
To get the low temperature sulfur resistant V2O5/TiO2 catalysts quantum chemical calculation study was carried out. After selecting suitable promoters (Se, Sb, Cu, S, B, Bi, Pb and P), respective metal promoted V2O5/TiO2 catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD) and Brunner Emmett Teller surface area (BET-SA). Se, Sb, Cu, S promoted V2O5/TiO2 catalysts showed high catalytic activity for NH3 selective catalytic reduction (NH3-SCR) of NOx carried at temperatures between 150 and 400 °C. The conversion efficiency followed in the order of Se > Sb > S > V2O5/TiO2 > Cu but Se was excluded because of its high vapor pressure. An optimal 2 wt% ‘Sb’ loading was found over V2O5/TiO2 for maximum NOx conversion, which also showed high resistance to SO2 in presence of water when compared to other metal promoters. In situ electrical conductivity measurement was carried out for Sb(2%)/V2O5/TiO2 and compared with commercial W(10%)V2O5/TiO2 catalyst. High electrical conductivity difference (ΔG) for Sb(2%)/V2O5/TiO2 catalyst with temperature was observed. SO2 deactivation experiments were carried out for Sb(2%)/V2O5/TiO2 and W(10%)/V2O5/TiO2 at a temperature of 230 °C for 90 h, resulted Sb(2%)/V2O5/TiO2 was efficient catalyst. BET-SA, X-ray photoelectron spectroscopy (XPS) and carbon, hydrogen, nitrogen and sulfur (CHNS) elemental analysis of spent catalysts well proved the presence of high ammonium sulfate salts over W(10%)/V2O5/TiO2 than Sb(2%)/V2O5/TiO2 catalyst.  相似文献   

10.
Al2O3-SiC composite ceramics were prepared by pressureless sintering with and without the addition of MgO, TiO2 and Y2O3 as sintering aids. The effects of these compositional variables on final density and hardness were investigated. In the present article at first α-Al2O3 and β-SiC nano powders have been synthesized by sol-gel method separately by using AlCl3, TEOS and saccharose as precursors. Pressureless sintering was carried out in nitrogen atmosphere at 1600 °C and 1630 °C. The addition of 5 vol.% SiC to Al2O3 hindered densification. In contrast, the addition of nano MgO and nano TiO2 to Al2O3-5 vol.% SiC composites improved densification but Y2O3 did not have positive effect on sintering. Maximum density (97%) was achieved at 1630 °C. Vickers hardness was 17.7 GPa after sintering at 1630 °C. SEM revealed that the SiC particles were well distributed throughout the composite microstructures. The precursors and the resultant powders were characterized by XRD, STA and SEM.  相似文献   

11.
The V2O5-WO3-MoO3/TiO2 honeycomb catalyst was prepared with industrial grade chemicals. The structural and physico-chemical properties were analyzed with X-ray diffraction (XRD), scanning electron micrograph (SEM) and mercury porosimetry. The NOx conversion and durability were investigated on a pilot plant test set under the actual operational conditions of a coal fired boiler. The catalyst monolith had good formability with mass percentage of V:W:Mo:TiO2 :fiber glass= 1:4.5:4.5:72:18. Vanadium, tungsten and molybdenum species were highly dispersed on anatase TiO2 without causing the transformation of anatase TiO2 to rutile by calcining under a current of air at 450℃ for 4.5 h, but there were some degrees of crystal distortion. The catalyst particle sizes were almost uniform with close pile-up and the pore structure was regular with complete macro-pore formation and large specific surface area. The NOx conversion was sensitive to temperature but nearly insensitive to NH3 . The catalyst showed strong adaptability to NOx concentration with activity above 80% in the range of 615-1640 mg·m-3 . Within the range of 720-8640 h continuous operation, the NOx conversion dropped at a rate of about 1% reduction per 600 h.  相似文献   

12.
The characteristics of sulfated V2O5/TiO2 honeycomb catalyst from metatitanic acid (MTA) were studied in the practical conditions of pilot plant using high dust flue gas from coal fired utility boiler. The effects of reaction temperature, NH3/NO mole ratio, space velocity and operation time on the reduction of nitric oxide (NO) were mainly investigated for engineering application. The catalyst showed high NO reduction of about 90% at a space velocity of 4000 h−1, NH3/NO mole ratio of 1.0 and reaction temperature of 300–400 °C. The efficiency of this catalyst remained constant during the present experiment of 2400 h and the erosion by fly ash was lower than that of the commercial catalysts. These results clearly demonstrate the high potential for this catalyst to be applied commercially for the control of NOx emissions from coal fired utility boiler.  相似文献   

13.
In this study, needle-shape TiO2 fibers were successfully fabricated inside a micro-channeled Al2O3-ZrO2 composite porous membrane system using sol-gel method. The micro-channeled Al2O3-ZrO2 composite was fabricated using the fibrous monolithic (FM) process. Pure anatase phase TiO2 was crystallized from the as-coated amorphous phase during calcination at 510 °C. The TiO2 fibers grew on the surface frame of the micro-channeled Al2O3-ZrO2 composite membrane and fully covered the inside of the micro-channeled pores. The specific surface area of the TiO2 coated membrane system was dramatically increased by over 100 fold compared to that of the non-coated system. The photocatalytic activity of the membrane was also assessed and was shown to very effectively convert organic materials. Thus, this novel membrane holds promise for use as an advanced filtration system.  相似文献   

14.
Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions were studied for potential applications in water decontamination technology and their capacity to induce an oxidation process under VIS light. UV–vis spectroscopy analysis showed that the junctions-based Cu2O, Bi2O3 and ZnMn2O4 are able to absorb a large part of visible light (respectively, up to 650, 460 and 1000 nm). This fact was confirmed in the case of Cu2O/TiO2 and Bi2O3/TiO2 by photocatalytic experiments performed under visible light. A part of the charge recombination that can take place when both semiconductors are excited was observed when a photocatalytic experiment was performed under UV–vis illumination. Orange II, 4-hydroxybenzoic and benzamide were used as pollutants in the experiment. Photoactivity of the junctions was found to be strongly dependent on the substrate. The different phenomena that were observed in each case are discussed.  相似文献   

15.
Vanadia-titania catalysts prepared by different sol–gel procedures were studied as heterogeneous catalysts for the liquid phase oxidation of limonene. The catalysts were characterized by XRD, XPS, ICP and nitrogen adsorption. According to the XRD results the catalyst samples can be divided in two different groups: anatase samples and anatase + rutile samples. XRD signals of vanadia are not found in the diffractograms.

The main reaction products are polymers. Limonene oxide, limonene glycol, carveol and carvone are obtained in small amounts. A number of autoxidation products, alcohols, aldehydes and ketones, are also obtained.

The effects of titania composition on the reaction orientation are discussed.  相似文献   


16.
The effect of tungsten and barium on the thermal stability of V2O5/TiO2 catalyst for NO reduction by NH3 was examined over a fixed bed flow reactor system. The activity of V2O5/sulfated TiO2 catalyst gradually decreased with respect to the thermal aging time at 600 °C. The addition of tungsten to the catalyst surface significantly enhanced the thermal stability of V2O5 catalyst supported on sulfated TiO2. On the basis of Raman and XRD measurements, the tungsten on the catalyst surface was identified as suppressing the progressive transformation of monomeric vanadyl species into crystalline V2O5 and of anatase into rutile phase of TiO2. However, the NO removal activity of V2O5/sulfated TiO2 catalyst including barium markedly decreased after a short aging time, 6 h at 600 °C. This may be due to the transformation of vanadium species to inactive V–O–Ba compound by the interaction with BaO which was formed by the decomposition of BaSO4 on the catalyst surface at high reaction temperature of 600 °C. The addition of SO2 to the feed gas stream could partly restore the NO removal activity of thermally aged V2O5/sulfated TiO2 catalyst containing barium.  相似文献   

17.
The effects of MgO (0–40 mol%) on the microstructure and the electrical properties have been studied in a binary ZnO–0.5 mol% V2O5 system. The microstructure of the samples consists mainly of ZnO grains with MgO and γ-Zn3(VO4)2 as the minority secondary phases. MgO is found to be effective as a grain growth inhibitor in controlling the ZnO grain growth, and a more uniform microstructure can be obtained. The non-linear coefficient α value is found to increase with the amount of MgO, and a highest value of 8.7 is obtained for the sample doped with 10 mol% MgO. Further addition of ≥20 mol% MgO decreases the α value.  相似文献   

18.
VOx–TiO2 catalysts with vanadium loading less than that of a monolayer have been prepared either by impregnation in aqueous media from solutions of V(V) or V(IV) at different concentrations and pH, or by grafting in anhydrous media on anatase supports with surface areas of 10, 150 and 350 m2 g−1. Their characterisation by XPS, DRIFT and Raman spectroscopy, compared to that of EUROCAT EL10V1 and V8 reference catalysts, shows that the dispersion of the load depends on the mode of preparation and is not necessarily equal to 1.  相似文献   

19.
A new type of all-solid-state pH sensor was investigated for the monitoring of pH in high temperature. The all-solid-state pH sensor consists of two half-cells: indicator electrode using the Li5YSi4O12 glass and an Ag/AgCl reference electrode coated with Nafion film. A stable Nafion film was achieved by heat treating at 100 °C for 1 h. The electromotive force (EMF) of the all-solid-state pH sensor decreased linearly with pH increase in water in accordance with the Nernst's equation. The all-solid-state pH sensor operated stably up to 80 °C. The sensitivity of the all-solid-state pH sensor against pH was high, and the EMF was also scarcely influenced by the presence of inorganic ions such as Li+, Na+ and Cl. It was practically confirmed by the pH titration test that the all-solid-state pH sensor behaved similar to the commercial pH meter with the conventional glass electrode. In addition, the all-solid-state pH sensor showed same equivalence point both at high temperature and low temperature operations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号