首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
为研究重熔功率对Inconel 718镍基自润滑涂层组织与性能的影响规律,采用激光熔覆技术在27SiMn钢板材上制备Inconel 718熔覆涂层,选用三种不同的激光功率二次重熔熔覆试样。使用超景深显微镜观察熔覆层表面形貌及金相组织,使用显微硬度计检测熔覆层的显微硬度,使用销-盘式摩擦磨损试验机检验及评价熔覆层的摩擦磨损性能。结果表明,激光重熔后熔覆层的晶粒得到明显的细化,随着重熔功率的增加,熔覆层晶粒尺寸先减小后增大,重熔功率为1 260 W时,熔覆层顶部晶粒尺寸最均匀细小;重熔后熔覆层的硬度均有较大提高,相较未重熔试件硬度最高可提升22%;从磨损形貌来看,试样的磨损机理主要为磨粒磨损,经重熔后试样的摩擦系数及磨损失重均得到了明显的降低。分析摩擦磨损试验数据可知,重熔功率在1 260 W时,试件的耐磨性能最好。  相似文献   

2.
为提高锡基巴氏合金的自润滑性能和耐磨性,将镀铜石墨(Cu-Gr)粉与锡基巴氏合金粉末混合,采用激光熔覆的方法在20钢基体表面制备锡基巴氏合金自润滑复合熔覆层。结果表明,激光熔覆后,通过铜包裹的石墨在复合熔覆层中仍以单质的形式存在;Cu-Gr/巴氏合金复合熔覆层均匀致密,表面无裂纹、气孔等缺陷。熔覆层主要由α-Sn固溶体相、硬质点相SnSb和Cu6Sn5相组成。由于镀铜石墨的添加,复合熔覆层的组织明显细化。复合熔覆层的显微硬度约为43.19 HV,相较于巴氏合金熔覆层提高了27%。由于显微硬度的增加和石墨的自润滑性能,复合熔覆层的摩擦系数和磨损率均有下降,分别为0.359和1.36×10-6 mm/(N-1·m-1)。Cu-Gr的添加能有效改善巴氏合金的自润滑性能和耐磨性能。  相似文献   

3.
采用激光熔覆技术,在45钢表面制备了钴基熔覆层。通过金相显微镜(OM)、扫描电子显微镜(SEM)、X射线能谱仪(EDS)和摩擦磨损试验机,检测熔覆层的微观结构组织、熔池形貌及熔覆层的耐磨损性能。结果表明,熔覆层质量随着激光功率的增大呈现先提高后降低的变化,达到2 000 W时,熔覆层质量最优,熔池较为稳定,无气孔等缺陷。熔覆层的显微组织从粗大弥散的柱状晶,转变为细小均匀的等轴晶,最终又变为粗大的柱状晶。在磨擦磨损试验中,随着激光功率的增大,熔覆层的磨损机理从块状剥落到颗粒磨损,其中功率为2 000 W时,熔覆层的耐磨性最优,实时摩擦因数最为平稳,磨损率仅为1.3×10-4 mm~3/(N·m)。  相似文献   

4.
为研究激光熔覆过程中重熔功率对熔覆层的形貌和性能影响,采用激光重熔技术,在Ti6Al4V钛合金表面制备了铁基/TiC复合涂层。采用着色渗透探伤剂和金相显微镜观察了熔覆层表面裂纹和气孔的分布情况,利用维氏硬度计和摩擦磨损测试仪表征了熔覆层的截面显微硬度和摩擦磨损性能。结果表明,重熔功率的增加能够有效地抑制熔覆层的裂纹和气孔;在力学性能方面,重熔后的熔覆层维氏硬度约是Ti6Al4V钛合金基体的8倍,当重熔功率为1 200 W时,所制备的铁基/TiC复合涂层的平均维氏硬度达到最大值,约为1 188 HV;此外,随着激光重熔功率增大,铁基/TiC复合涂层在磨擦磨损的过程中可以有效地阻止磨粒和摩擦副对熔覆层的微切削与塑性变形,同时,熔覆层的磨损量降低,摩擦系数降低。  相似文献   

5.
采用激光熔覆技术在GCr15钢基材上制备FeCrNiSi合金熔覆层,通过超景深显微镜、显微硬度计及摩擦磨损试验机,研究激光工艺参数对熔覆层显微组织、硬度及摩擦磨损性能变化的影响规律.结果 表明:随着激光功率增大,熔覆层一次枝晶呈逐渐变大、变长的趋势,一次枝晶间距先增大后减小,二次枝晶间距逐渐减小;随着扫描速度加快,熔覆层一次枝晶呈先变大后减小的趋势,一次枝晶间距先增大后减小,二次枝晶间距先减小后增大.随着激光功率的降低或扫描速度的增加,熔覆层表面硬度提高,当激光功率为2400W、扫描速度为7 mm/s时,熔覆层最高硬度为781.5 HV,是基材的3.4倍;此时熔覆层磨损机制由磨粒磨损和黏着磨损逐渐演变为疲劳主导的磨损机制.  相似文献   

6.
张昌春  石岩  王洪新 《激光技术》2018,42(4):494-499
为了分析激光功率对Co基梯度耐磨涂层组织和性能的影响,采用激光熔覆在20CrMnMo钢表面依次熔覆St6,St12B,Co47+WC(质量分数为0.05)合金粉末制备厚度约为2.4mm的Co基梯度耐磨涂层,进行了微观组织分析、显微硬度测试、摩擦磨损试验。结果表明,不同激光功率下涂层表面均没有出现裂纹且各涂层中晶体形貌相似,表层出现致密的等轴晶、过渡层出现粗大的柱状晶、底层出现平面晶和树枝晶;600W时耐磨层中发现未熔WC颗粒,800W耐磨层发现CoW2B2硬质相;在600W~800W范围内,激光功率越高,涂层整体的显微硬度和耐磨性越好;激光功率为800W时,耐磨层显微硬度达到730HV0.1,涂层耐磨性相对于基体提高了300%。此研究结果对激光熔覆制备Co基梯度耐磨涂层提供了参考依据。  相似文献   

7.
激光熔覆原位生成TiC-ZrC颗粒增强镍基复合涂层   总被引:7,自引:0,他引:7  
采用预涂粉末激光熔覆技术,在45#钢表面制备出原位牛成TiC-ZrC颗粒增强的镍基复合涂层.使用扫描电镜(SEM),EDS能谱和X射线衍射(XRD)对熔覆层的显微组织和物相构成进行了分析,并对熔覆层进行了硬度、摩擦性能测试.结果表明,在适当的工艺条件下,原位生成TiC-ZrC颗粒增强镍基复合涂层形貌良好,涂层与基材呈冶金结合.熔覆层底部组织为定向生长的γ(NiFe)树枝晶,熔覆层中上部组织为先共晶析出的TiC-ZrC颗粒相和Cr3C2条状相均匀分布于γ(NiFe)树枝晶基体中.熔覆层具有高的硬度(平均硬度HV0.31300)和良好的耐磨性,与纯Ni60熔覆层相比,其磨损失重仅为纯Ni60熔覆层的1/4.熔覆层硬度和耐磨性的提高归因于大量TiC-ZrC复合颗粒的形成及其在涂层中的均匀弥散分布.  相似文献   

8.
利用3 kW光纤同轴激光熔覆设备将Fe-Cr-Mo-Si合金粉末熔覆到Q235钢表面,制备出了耐磨的铁基合金熔覆层,通过金相显微镜、维氏硬度计和摩擦磨损试验机等设备研究了Fe-Cr-Mo-Si熔覆层的显微组织、硬度及摩擦磨损行为.结果 发现:Fe-Cr-Mo-Si熔覆层的显微组织均匀致密,且无气孔、裂纹等缺陷;熔覆层主要由树枝晶组成,熔覆层/Q235钢结合面处形成了细小的平面晶组织,熔覆层与基体实现了良好的冶金结合;熔覆层的平均硬度为642.2 HV,约为基体硬度的4倍;当载荷为50N时,熔覆层和基体试样的平均摩擦因数分别是0.621和0.512,熔覆层的磨损量仅为基体的14.6%;摩擦因数随载荷的增加而减小,磨损轮廓尺寸随载荷的增加而增大;熔覆层的磨损机制为磨粒磨损和黏着磨损,而基体的磨损机制以黏着磨损和疲劳剥落磨损为主.试验结果表明,在Q235钢表面激光熔覆Fe-Cr-Mo-Si合金粉末能够显著提高材料的耐磨性能.  相似文献   

9.
金康  杨勇  梁万旭  熊李  齐康 《激光杂志》2022,43(5):29-33
为研究不同激光功率对高速吐丝机护板上熔覆涂层宏观形貌影响,确定最佳激光功率,在材料为42CrMo的高速吐丝机护板上用Stellite-6粉末进行不同激光功率的熔覆实验,并利用显微硬度计及摩擦磨损试验机及着色探伤剂对熔覆层进行了形貌的研究。结果,随着激光功率的增加裂纹敏感性降低,裂纹数减少,硬度随激光功率增加而减小。熔覆层摩擦系数与磨损量相对基体减小明显,表明得到良好的减摩效果。结论,综合考虑激光功率对Stellite-6熔覆层组织与性能的影响,选择功率为1 400 W为最佳功率。  相似文献   

10.
为提高U71Mn钢的耐磨性,延长钢轨的使用寿命,选择Stellite6粉、TiC粉和Y2O3粉为熔覆粉末,采用激光熔覆同轴送粉技术在U71Mn钢基体表面制备钴基合金熔覆层。利用光学显微镜、扫描电子显微镜、X射线衍射仪、显微硬度仪器、超景深显微镜、磨损试验机,分析熔覆层宏观形貌、显微组织、物相组成、显微硬度、磨损形貌和摩擦磨损性能。研究表明,在质量分数为10%TiC-钴基粉末中添加粉末总质量2%的Y2O3粉末,可获得较好的单道熔覆层;在激光功率为1 200 W,扫描速度为5 mm/s,送粉速度为1.0 r/min,搭接率为40%时,可获得表面最为平整的熔覆层。熔覆层显微组织由等轴晶和柱状晶组成,熔覆层与基体冶金结合良好,熔覆层主要由TiC、Cr7C3、Cr23C6、γ-Co和Co3Ti组成。熔覆层硬度最高可达572 HV,平均硬度约为基体的1.8倍;熔覆层磨损量为基材磨损量的3.83%,钴基熔...  相似文献   

11.
27SiMn钢液压支架在恶劣的工作条件下长期使用后,其表面容易形成腐蚀,磨损和疲劳损坏等缺陷。为提升其使用寿命,本文利用宽带激光熔覆技术在27SiMn钢表面进行制备铁基涂层的实验研究。基于控制变量的方法来依次调整激光功率、送粉速度、载气流量及扫描速度开展单道单因素熔覆试验,并以表面粗糙度为熔覆层质量评价指标初选工艺参数。基于单因素试验进一步开展4因素3水平正交试验,终选显微硬度为熔覆层质量评价指标。利用极差分析考察数据发现扫描速度对熔覆层显微硬度影响最大,其后依次为激光功率、载气流量和送粉速度,最优工艺参数为熔覆处在激光焦点位置且激光功率、送粉速度、在其流量和扫描速度分别为4000 W、2.50 rpm、6.9 L/min和600 rpm。同时对熔覆层进行了摩擦磨损试验,分析了摩擦因素、磨损率及磨损形貌,验证了工艺参数优化的可行性。最终,熔覆层平均硬度较基体提升2.2倍,磨损率较基体提升27%。工艺参数优化能够实现铁基合金粉末熔覆层表面硬度及耐磨性的显著提升,对熔覆修复27SiMn液压支架大有帮助。  相似文献   

12.
45钢表面激光熔覆Fe901合金的摩擦磨损性能   总被引:4,自引:0,他引:4  
在45钢表面制备了Fe901激光熔覆层,检测了熔覆层的组织、物相与硬度,采用干摩擦方式对激光熔覆层与45钢试样进行了摩擦磨损实验。结果表明:熔覆层组织均匀致密,组成相主要为马氏体和少量CrFeB、Cr7C3金属间化物;熔覆层的平均硬度为718 HV,显著高于基体的硬度(269 HV);45钢的磨损机制主要为磨粒磨损、疲劳剥落和氧化磨损,熔覆层的磨损机制主要为磨粒磨损;当加载载荷为10,20,30 N时,在干摩擦条件下,激光熔覆层的摩擦因数比45钢低,相对耐磨性分别为45钢的4、18、20倍,表明激光熔覆Fe901合金显著提高了45钢的耐磨性能。  相似文献   

13.
原位生成NbC颗粒增强镍基激光熔覆层   总被引:9,自引:2,他引:9  
激光熔覆技术是金属材料表面强化和改性的有效方法之一。利用该技术,在A3钢表面激光熔覆预置涂层,成功制备出了原位生成NbC颗粒增强的镍基复合涂层,并进行了硬度、摩擦性能测试,X射线衍射(XRD)和显微组织分析。扫描电镜(SEM)、能谱分析(EDS)和X射线衍射分析结果表明,原位生成NbC颗粒增强的镍基复合涂层与基材呈现良好的冶金结合,熔覆层的组织为先共晶析出的树枝晶(Cr,Fe碳化物相)和原位生成的NbC颗粒相均匀分布在γ(Ni Fe)基体中。硬度测试和摩擦磨损实验表明,激光熔覆原位生成NbC颗粒增强镍基复合涂层平均硬度高达HV0.31200,耐磨性是纯Ni60激光熔覆层的2.5倍。分析认为,其硬度和耐磨性提高的原因在于涂层中形成了大量的、原位生长的NbC颗粒增强相,且均匀分布于基体中。  相似文献   

14.
崔静  郜峰  杨广峰 《激光与红外》2023,53(10):1492-1496
为探究功率参数对AerMet100钢激光熔覆C276涂层组织与性能的影响,为起落架的复合材料研究提供参考。利用激光熔覆技术在A100钢表面制备HastelloyC276熔覆层,并通过电子显微镜、XRD衍射仪、EDS能谱仪、电化学工作站和摩擦磨损仪等设备,研究功率参数对显微组织形貌、物相、硬度和耐蚀性能的影响。实验结果表明,不同涂层组织顶部主要由等轴晶和胞状晶组成,中部主要由柱状晶和胞状晶组成,底部主要由平面晶、柱状晶和胞状晶组成,且随着功率参数的增加,组织尺寸逐渐增大,中部等轴晶逐渐生长为胞状晶,底部胞状晶逐渐生长为平面晶。不同功率参数下熔覆层主相类别无明显变化,且熔覆层中存在偏析现象。综合分析在功率参数1400W下熔覆质量最好,综合性能最佳。  相似文献   

15.
采用同轴送粉法,通过YLS-4000多模光纤激光器以不同功率在高锰钢表面激光熔覆Ni/WC陶瓷复合涂层,通过光学显微镜、显微硬度计,对涂层的组织形貌、显微硬度进行了分析研究,做了室温干摩擦磨损试验并分析研究了涂层的耐磨性能。结果表明,Ni/WC层组织沿深度方向依次出现细小的胞状晶、树枝晶、柱状树枝晶和薄的平面晶,在1600 W、1900 W、2200 W的激光功率下对应的Ni/WC层的平均显微硬度分别为980.7 HV0.1、901.0 HV0.1、809.4 HV0.1,分别为基材平均显微硬度的2.8、2.5、2.3倍。在相同摩擦磨损试验条件下,基体的磨损量是激光功率为1600 W条件下的熔覆层的10.4倍,在激光功率为1600 W时,通过激光熔覆获得了组织致密均匀、硬度高和具有良好耐磨性的涂层。  相似文献   

16.
晁明举  张现虎  杨宁  杨文超  程慧 《中国激光》2008,35(11):1723-1729
采用预涂粉末激光熔覆技术,在A3钢表面成功制备出原位生成VC-VB-B4C复合颗粒增强的镍基复合涂层.使用扫描电镜(SEM),EDS能谱和X射线衍射(XRD)对熔覆层的显微组织和物相构成进行了分析,并对熔覆层进行了硬度、摩擦性能测试.结果表明,原位生成VC-VB-B4C复合颗粒增强镍基复合涂层与基材呈冶金结合.熔覆层底部组织为定向生长的γ(Ni)树枝晶,熔覆层中、上部组织为大量先共晶析出的VC-VB-B4C颗粒相和Cr3C2条状相均匀分布于γ(Ni)基体中.熔覆层具有高的硬度(平均硬度HV0.31350)和良好的耐磨性,其磨损失重仅为纯Ni60熔覆层的1/3.熔覆层硬度和耐磨性的提高归因于大量VC-VB-B4C复合颗粒的形成及其在涂层中的均匀分布.  相似文献   

17.
铁基合金激光熔覆层的摩擦学特性   总被引:6,自引:3,他引:3  
为评估激光熔覆技术修复塑料模具的磨损性能,采用铁基合金粉末在40Cr钢基体表面进行激光熔覆。激光熔覆层为上试样,GCr15钢球为下试样,利用HT-500磨损试验机进行摩擦磨损试验,研究在干摩擦、润滑条件下,激光熔覆层及其配副的摩擦学特性。利用表面形貌仪测量磨痕的深度和宽度,理论计算磨损率。研究结果表明,在干摩擦条件下,随载荷的增加,激光熔覆层及其配副的摩擦系数先降低后增加,当载荷为300 g时摩擦系数最小;随载荷的继续增加,摩擦系数逐渐增大。在相同载荷与润滑条件下,激光熔覆层及其配副的摩擦系数、磨损率、磨痕宽度均小于干摩擦条件下的值;随着磨损时间的增加,摩擦系数在磨损后期略有上升,磨损深度、磨损体积、磨损率逐渐增大。  相似文献   

18.
利用大功率激光在1Cr18Ni9Ti表面熔覆NiCrBSi涂层,采用SEM、EDS和MM2000磨损试验机研究了不同激光功率下熔覆层的显微组织、成分及磨损特性.结果表明,熔覆层由熔覆区和结合区两部分组成,熔覆区主要有γ-(Ni,Fe)、CrB等多种相结构,呈现出树枝晶、不规则颗粒状、针状及共晶形式等多种形貌.结合区为细小柱状晶,激光功率增大,稀释率增大.熔覆层的磨损为磨粒磨损和粘着磨损共同作用的结果,磨损率分布在(2.2~2.6)×10-5 mm3/m.N之间,平均摩擦系数为0.52.激光功率增加,耐磨性下降.EDS分析表明主要元素Ni、Fe、Cr、Si在熔覆层中均匀分布.高功率激光熔覆层中,Fe含量所占比重明显增加.  相似文献   

19.
为了提高TC4合金表面的硬度和减磨性、优化工艺参数, 采用多组工艺参数(不同功率、不同TiO2粉末含量)在TC4板表面制备不同比例的Fe60-TiO2复合涂层, 分析了熔覆层宏观形貌、表面维氏硬度和减磨性。结果表明, 当激光功率为500W、TiO2质量分数为0.10时, 熔覆层表面较平整; 通过X射线衍射分析熔覆层生成较多Ti化合物, 这些Ti化合物对提高熔覆层硬度和减磨性非常有利; 熔覆层硬度比基体提高了约2.5倍; 摩擦系数较基体相比有所降低, 熔覆层的平均摩擦系数约为0.46。此研究结果对TC4钛合金表面熔覆Fe基复合涂层的硬度和减磨性工艺参数有一定指导作用。  相似文献   

20.
原位生成TaC颗粒增强镍基激光熔覆层   总被引:1,自引:2,他引:1  
利用激光熔覆技术,在A3钢表面制备出了原位生成TaC颗粒强化的镍基复合涂层。使用金相显微镜、扫描电镜(SEM)、电子能谱(EDS)和X射线衍射(XRD)仪对熔覆层进行了显微组织和物相分析,并测试了熔覆层显微硬度及摩擦性能。结果表明,在适当的工艺条件下,激光熔覆制备原位生成TaC颗粒增强镍基复合涂层成形良好、表面光滑,涂层与基体呈现良好的冶金结合。熔覆层组织由原位生成的TaC颗粒相 Cr3C2与γ(Cr-Ni-Fe-C)的枝状共晶相 γ(Cr-Ni-Fe-C)基体组成。由于TaC颗粒强化相的形成及其均匀弥散分布,既提高了涂层中的强化相比例,又细化了组织,使得TaC/Ni60激光熔覆层具有高的硬度(平均硬度HV0.31100),与纯Ni60熔覆层相比,耐磨性提高4倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号