共查询到20条相似文献,搜索用时 15 毫秒
1.
针对密度峰值聚类(Density Peak Clustering, DPC)算法具有时空复杂度高而降低了对大规模数据集聚类的有效性,以及依靠决策图人工选取聚类中心等缺点,提出基于网格的密度峰值聚类(G-DPC)算法。采用基于网格的方式进行网格划分,用网格代表点替换网格单元整体;对各代表点聚类,通过改进的自适应方法选出核心网格代表点作为聚类中心;将剩余点归类,剔除噪声点。仿真实验验证了该算法对大规模数据集和高维数据集聚类的有效性。 相似文献
2.
3.
提出网格相对密度的概念和边界点提取技术,在此基础上给出了一种多密度聚类算法。该算法使用网格相对密度识别具有不同密度聚簇的相对高密度网格单元,聚类时从相对高密度网格单元开始逐步扩展生成聚簇。实验结果表明,算法能有效地识别不同形状、不同密度的聚簇并对噪声数据不敏感,具有聚类精度高等优点。 相似文献
4.
一种改进的BIRCH分层聚类算法 总被引:2,自引:0,他引:2
由于传统的BIRCH算法是用直径来控制聚类的边界,因此如果簇不是球形,它就不能很好地工作,而且传统的BIRCH算法只适用于单表.针对BIRCH的这些缺点,本文提出了一种改进的BIRCH-IBIRCH算法,该算法首先通过ID传播把多个表联系起来,使得BIRCH算法可以适用于多表的情况,再通过计算共享最近邻密度,可以发现任意形状的簇.实验表明,该算法不仅具有较强的可伸缩性,还可以得到较高精确的聚类结果. 相似文献
5.
6.
针对复杂及带噪声的数据集的聚类问题, 提出了一种基于局部密度的网格排序策略(GSS-LD)并以其作为网格聚类的组织模式. GSS-LD一方面利用聚类的局部性质进行网格单元排序, 将基于网格的聚类问题转化为网格的排序问题;另一方面运用相对局部密度变化率的概念, 克服了传统网格聚类算法中全局性参数的局限性, 使其可以适应多密度数据集的聚类. 通过3组具有不同拓扑结构的数据集测试GSS-LD的聚类性能并同其它两种方法进行比较, 结果表明GSS-LD可以对复杂数据集进行有效聚类, 它的时间复杂度分别与数据规模及网格结构具有线性关系, 同时具有较强的噪声处理能力. 相似文献
7.
针对网格密度聚类算法存在的网格宽度和密度阈值难以确定以及聚类精度不高的缺陷,提出了一种参数自适应的网格密度聚类算法。定义了数据集标准化离散度的概念,运用数据集的自然分布信息自适应地计算出每一维较优的分割宽度,对不同的密度阈值统计其噪声样本对象的数量,绘制了噪声曲线,从噪声曲线中获得最佳的密度阈值,而且增加了类簇边缘处理技术,进一步提高了聚类的质量。仿真实验表明,改进后的算法可获得更好的聚类效果。 相似文献
8.
网格密度峰值聚类在兼顾密度峰值聚类算法可识别任意形状类簇的基础上,通过数据集的网格化简化整体计算量,成为当前备受关注的聚类方法.针对大规模数据,如何进一步区分稠密与稀疏网格,减少网格密度峰值聚类中参与计算的非空网格代表点的数量是解决“网格灾难”的关键.结合以网格密度为变量的概率密度分布呈现出类Zipf分布的特点,提出一种基于Zipf分布的网格密度峰值聚类算法.首先计算所有非空网格的密度并映射为Zipf分布,根据对应的Zipf分布筛选出稠密中心网格和稀疏边缘网格;然后仅对稠密中心网格进行密度峰值聚类,在自适应确定潜在聚类中心的同时减少欧氏距离的计算量,降低算法复杂度;最后通过对稀疏边缘网格的处理,进一步优化类簇边界并提高聚类精度.人工数据集和UCI数据集下的实验结果表明,所提出算法对大规模、类簇交叉数据的聚类具有明显优势,能够在保证聚类精度的同时降低时间复杂度. 相似文献
9.
10.
11.
12.
基于扩展和网格的多密度聚类算法 总被引:6,自引:1,他引:6
提出了网格密度可达的聚类概念和边界处理技术,并在此基础上提出一种基于扩展的多密度网格聚类算法。该算法使用网格技术提高聚类的速度,使用边界处理技术提高聚类的精度,每次聚类均从最高的密度单元开始逐步向周围扩展形成聚类.实验结果表明,该算法能有效地对多密度数据集和均匀密度数据集进行聚类,具有聚类精度高等优点. 相似文献
13.
一种基于网格和密度的数据流聚类算法 总被引:1,自引:0,他引:1
在"数据流分析"这一数据挖掘的应用领域中,常规的算法显得很不适用.主要是因为这些算法的挖掘过程不能适应数据流的动态环境,其挖掘模型、挖掘结果不能满足实际应用中用户的需求.针对这一问题,本文提出了一种基于网格和密度的聚类方法,来有效地完成对数据流的分析任务.该方法打破传统聚类方法的束缚,把整个挖掘过程分为离线和在线两步,最终通过基于网格和密度的聚类方法实现数据流聚类. 相似文献
14.
15.
16.
《计算机工程与应用》2016,(22):81-85
针对传统基于密度树网格聚类算法中存在人为设置密度阈值、重复查询邻域内对象以及边界点处理不当等问题,提出了一种改进的基于密度与网格的聚类算法。该算法首先将全部网格的平均密度值作为其密度阈值,避免了人为设置密度阈值的偏差;其次采用自适应算法确定密度半径,使其能适用到动态的聚类中;然后采用对邻域外未标记的点作为下一个核心点,依据分类情况进行扩展,对邻域对象的查询不再出现重复;最后对边界点进行了处理,增强了算法的聚类精度。实验结果表明,改进的算法在时间的效率及精度方面均有提高,并且能更好地适应聚类的动态性。 相似文献
17.
18.
虽然现有的很多聚类算法能发现任意形状、任意大小的类,但用于多密度的数据集时却难以取得令人满意的结果。为提高对多密度数据集的聚类效果,提出了一种基于网格和信息熵的多密度聚类算法,它通过不同密度的网格所携带的信息熵,自动计算出密度阈值,找出在多密度数据集中不同的类。实验证明,该算法能有效的去处噪声,发现多密度的类,具有较好的聚类效果。 相似文献
19.
20.
该文讨论了基于网格和密度的聚类算法,该算法是在基于密度的聚类算法和基于网格的聚类算法的基础上提出的。通过与传统的几种基于聚类算法的比较,详细讨论了基于网格和密度的聚类算法的性能,并提出了该算法的不足之处。 相似文献