首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高低周复合载荷下的钛合金疲劳寿命估算   总被引:2,自引:0,他引:2  
赵振华  陈伟  吴铁鹰 《机械强度》2011,33(4):629-632
航空发动机转子叶片等在工作中常受到高低周复合载荷的作用.对TC11钛合金试件进行低周、高周和高低周复合疲劳性能试验,得到不同载荷类型下的中值寿命.在试验结果的基础上,运用线性累积、非线性累积损伤理论,对高低周复合疲劳试验的寿命进行估算,并对结果进行分析讨论.结果表明:高低周复合循环降低了TC11的抗疲劳性能;线性累积损...  相似文献   

2.
考虑附加强化效应的多轴高周疲劳损伤演化模型   总被引:2,自引:0,他引:2  
基于连续介质损伤力学理论并结合修正循环强度系数法,研究非比例加载对材料高周疲劳寿命的影响,建立一种多轴应力当量折算高周疲劳损伤强化模型。同时根据常规微塑性应变高周疲劳损伤演化模型给出的S-N曲线方程以及修正循环强度系数法基本原理对所建模型的材质参数识别方法进行阐述。以航空工业常用的金属材料铝合金LY12CZ和30Cr Mn Si A钢为计算实例,得到两种材料的模型参数。将已建的损伤演化模型嵌入到ABAQUS的UMAT子程序中,实现了对受损试件的损伤追踪以及寿命预测。两种材料计算结果表明,新建模型的预测效果均在3倍误差以内,与试验吻合较好。此外,还对比分析现有的其他多轴寿命预测模型的预测效果,结果表明,新建模型更适合于多轴高周疲劳寿命预测。  相似文献   

3.
对HRB335钢进行单轴(拉压、纯扭路径)和多轴非比例(圆形、菱形和蝶形路径)加载疲劳试验,在试验基础上标定等效应变法、KBM临界面模型和引入拉伸因子的临界面模型(拉伸因子模型)参数,对比分析了各模型对HRB335钢多轴疲劳寿命预测的有效性;通过引入路径非比例度和材料附加强化参数对拉伸因子进行修正,并对修正拉伸因子模型的预测结果进行了验证.结果表明:等效应变法对HRB335钢疲劳寿命的预测结果大部分超出三倍误差范围,KBM临界面模型与拉伸因子模型对圆形和蝶形路径加载下的疲劳寿命预测结果也部分超出了三倍误差范围;修正拉伸因子模型对5种加载路径下HRB335钢的疲劳寿命预测结果都位于三倍误差范围内,并且对Q235钢和304不锈钢的多轴疲劳寿命预测值也与实测结果吻合,该模型合理有效.  相似文献   

4.
《机械强度》2016,(1):151-155
低循环疲劳失效是轮盘失效的主要形式。为了找到更加精确可靠地预测轮盘低周疲劳寿命的方法,基于三参数幂函数公式,提出了描述Walker等效应变参量与疲劳寿命关系的修正寿命预测模型。应用修正寿命预测模型对1Cr11Ni2W2Mo V、GH4133、TC4及TC11合金材料不同条件下的低周疲劳试验数据进行模拟,发现拟合曲线能够很好地描述Walker等效应变与寿命之间的关系,寿命预测点全部位于2倍分散带内。采用不同方法对高压压气机I级盘60℃下的寿命进行预测,并将预测结果与轮盘试验值进行比较。结果表明:修正模型的预测寿命值为1 048,与试验值1 340相近,相对误差仅为-21.8%,预测精度明显高于另外三种模型,并且修正模型能够考虑平均应力的变化对疲劳寿命所产生的影响,可为发动机轮盘的低周疲劳寿命预测提供参考方法。  相似文献   

5.
基于损伤力学基本理论,建立了LY12CZ铝合金试件的腐蚀疲劳寿命预测模型,并利用LY12CZ铝合金进行腐蚀疲劳的验证性试验。结果表明,利用损伤力学基本理论建立的模型所得到的预腐蚀LY12CZ铝合金试件腐蚀的疲劳寿命预测结果与腐蚀疲劳试验结果吻合程度良好,尤其对于应力水平较高的低周疲劳结果预测更为准确。这说明基于损伤力学的铝合金预腐蚀疲劳寿命预测模型合理有效,对LY12CZ铝合金构件的损伤容限评估具有参考价值。  相似文献   

6.
选取带有V型缺口45钢试样,通过控制加载过程中的应变幅,研究缺口对试样疲劳寿命的影响.并应用低周疲劳寿命预测理论,提出了修正的Manson寿命预测模型,用来预测带有V型缺口中45钢的低周疲劳寿命.模型的预测结果和试验结果吻合很好.  相似文献   

7.
对TC4钛合金板进行不同次数激光喷丸处理,再进行高周疲劳试验,研究了其疲劳性能及断裂机理;基于残余压应力及晶界介微观尺寸对微裂纹扩展的阻滞作用,采用抑制参数、张开应力强度因子、残余应力强度因子对Paris公式进行修正,建立了激光喷丸处理后疲劳微裂纹扩展预测模型,并进行了试验验证.结果表明:随着喷丸次数增加,TC4钛合金的疲劳强度增大,疲劳寿命延长,断裂方式由脆性断裂向韧性断裂转变;疲劳微裂纹预测模型预测得到的疲劳寿命与试验值的相对误差小于10%,说明模型准确.  相似文献   

8.
宋昌平  王金龙 《机械设计》2021,38(5):104-109
表面粗糙度是影响金属材料疲劳性能的重要因素,尤其针对钛合金TC17.目前基于表面粗糙度的钛合金TC17疲劳失效研究尚未得到广泛开展,相应的试验数据及结果也较少.以超声疲劳试验技术为基础,针对钛合金TC17进行不同粗糙度条件下的疲劳试验,使用先进的检测设备对试件断口进行观察与检测,分析表面粗糙度对钛合金TC17疲劳失效的影响.结果 发现:粗糙度对TC17疲劳失效特征及疲劳性能存在劣化作用,在高周与超高周疲劳范畴中,表面粗糙度都是引起TC17疲劳失效的主要因素.以Murakami模型为基础,结合钛合金TC17疲劳试验结果,验证了经典模型对钛合金TC17疲劳强度预测的适用性,并预测了不同粗糙度条件下TC17的疲劳强度.文中研究内容对钛合金TC17的应用具有积极意义.  相似文献   

9.
《机械强度》2016,(5):962-966
在使用裂纹扩展的方法预测焊点疲劳寿命时,裂纹尖端塑性区的存在会对寿命预测结果产生影响,而现有的大多数寿命预测方法在预测寿命的过程中并没有考虑裂纹尖端塑性对寿命预测结果的影响。针对几种不同的高强钢电阻点焊TS试样进行了疲劳寿命试验,得到了不同材料的疲劳寿命与裂纹扩展路径,在此基础上使用裂纹扩展的方法对TS试样的寿命进行了理论预测。考虑裂纹尖端的塑性变形,对理论寿命预测结果进行了塑性修正,修正后的曲线在高周疲劳区寿命预测结果几乎不变,在低周疲劳区寿命预测结果减小,寿命预测曲线变化趋势与实验结果相符合。高周疲劳由于载荷较小,塑性区半径小,所以塑性对疲劳寿命的影响小,低周疲劳区由于载荷较大,塑性区半径大,塑性对疲劳寿命影响较大。  相似文献   

10.
铝合金汽车轮毂疲劳寿命预测的研究   总被引:1,自引:1,他引:0  
以14×6JJ铝合金汽车轮毂为研究对象,根据疲劳寿命预测理论,建立轮毂受力危险点处的疲劳寿命曲线。把局部应力应变法推广应用于高周疲劳,对轮毂进行疲劳寿命计算。运用可靠度理论,对预测得到的轮毂寿命进行可靠度计算。结果表明,局部应力应变法经过修正推广应用于预测汽车轮毂的疲劳寿命具有较高的可靠性。  相似文献   

11.
高低周复合载荷作用下微动疲劳寿命预测研究   总被引:2,自引:1,他引:2  
对高低周复合载荷作用下微动疲劳寿命预测方法进行了研究。首先,进行了高低周复合载荷作用下的桥式试件和榫联接试件的微动疲劳试验。其次,对微动疲劳中的力学参数进行分析,提出了将力学参数分为应力状态参数和微动摩擦参数两类。用边界元法对试件接触表面的参数进行分析。最后,基于数值分析和试验结果,建立了合金钢在高低周复合载荷作用和受钛合金微动作用时的微动疲劳寿命预测公式,并将其应用于榫联接试件的寿命计算,结果令  相似文献   

12.
疲劳断裂是金属材料最普遍的失效模式之一,而由缺口特征引发的应力梯度效应更是工程部件抗疲劳设计的关键瓶颈问题。因此,发展高精度的缺口疲劳强度分析方法是保障工程结构服役完整性的关键。据此,提出耦合临界距离理论与Weibull分布的缺口件疲劳寿命预测模型,并综合考虑尺寸效应及应力梯度效应对临界距离的影响。研究表明,在给定疲劳寿命下,临界距离随应力梯度增大而减小,故提出基于相对应力梯度修正的临界距离模型,以合理量化尺寸效应对临界距离的影响。最后,基于镍基合金GH4169与铝合金Al 2024-T351的缺口疲劳试验数据进行模型验证与对比,结果表明新模型相较于传统临界距离理论预测精度显著提高。  相似文献   

13.
用局部应力应变法进行高周疲劳寿命预测的研究   总被引:1,自引:0,他引:1  
钱桂安  王茂廷  王莲 《机械强度》2004,26(Z1):275-277
概述局部应力应变法的基本原理和目前的使用方法,指出在计算中现行方法对低周疲劳有较好的寿命预测精度,但对高周疲劳寿命预测精度不高.这主要是因为没有考虑应力集中、表面加工状况、尺寸和环境介质的影响.在充分考虑四者之后,对应变寿命曲线的弹性分量进行修正,并推导出高周疲劳下的局部应力应变法修正公式.本方法计算简单、精度高.通过实例对传统局部应力应变法和文中提出的方法进行比较,得出本方法不仅适用于低周疲劳寿命分析,也可用于高周疲劳寿命计算.在工程中有良好的应用前景.  相似文献   

14.
对LY12铝合金缺口试样进行了疲劳试验,并根据此试验数据建立了计算初始不连续状态(IDS)的力学模型,得到了LY12铝合金的IDS值,用IDS值对含缺口结构件疲劳寿命进行了预测.结果表明:LY12铝合金的IDS值符合三参数威布尔分布;预测的疲劳寿命与试验结果吻合良好,从而为把基于断裂力学中裂纹扩展的损伤容限方法向传统疲劳研究领域延伸提供了依据.  相似文献   

15.
蒋泽  许希武  郭树祥  吴斌  戚岩 《机械强度》2021,43(2):425-433
建立了TC4钛合金材料的疲劳裂纹萌生寿命的预测模型,并通过试验验证了此模型在预测TC4钛合金材料疲劳裂纹萌生寿命时的可行性.基于裂纹萌生的细观位错模型,采用Tanaka-Mura的开裂寿命公式,考虑了表面粗糙度,提出了分析TC4钛合金材料疲劳裂纹萌生的有限元模型,并通过实验验证仿真模型的有效性.结果 表明:模型裂纹萌生...  相似文献   

16.
针对多轴疲劳失效问题,选取2A12航空铝合金进行应力幅比变量、相位差变量和平均应力变量的多轴疲劳试验。对常用的3种多轴疲劳应力准则寿命预测模型(即Lee准则、Carpinteri准则和Sines准则)进行讨论,并通过引入应力幅比参量和相位差参量,提出基于Carpinteri准则的修正模型。将不同条件下2A12航空铝合金的试验寿命与不同应力准则下模型的预测寿命进行比较,结果表明:Lee准则对上述多轴疲劳试验的预测结果过于危险;Carpinteri准则和Sines准则由于未考虑拉-扭应力幅比和相位差因素,预测寿命与实际寿命相比均出现了较大偏差;修正后的应力准则寿命预测模型在不同条件下90%的寿命预测数据在两倍误差带内。  相似文献   

17.
对7075/2A12异种铝合金搅拌摩擦焊搭接接头进行了疲劳加载测试,并观察了疲劳断口特征。根据实际试件结构建立局部应力应变法和缺口应力法有限元模型,对焊缝区域进行应力应变分析;结合Soderberg修正方程对Manson-Coffin(MC)模型中应力部分进行修正,再根据有限元分析结果,使用局部应力应变法和缺口应力法对异种铝合金搅拌摩擦焊搭接接头进行疲劳寿命预测。试验结果表明,有效搭接厚度严重影响试件的疲劳寿命;位于受载7075前进侧的钩状缺陷比7075后退侧钩状缺陷对疲劳寿命的影响大。与试验结果相比,局部应力应变法中,2组试件最小板厚处疲劳寿命的预测结果都要比钩状缺陷根部处疲劳寿命的预测精度高。部分试件结合Soderberg方程修正的MC模型预测误差大部分都在2个因子之内,而Smith-Watson-Topper(SWT)模型和其他MC修正模型预测结果均在3个因子之内,Sachs修正的MC模型和Morrow修正的MC模型的预测结果相近;缺口应力法中,部分试件预测结果较好,误差在2个因子之内。  相似文献   

18.
鉴于目前SUS441铁素体不锈钢催化器总成应用低周疲劳寿命预测经验通用公式精度低的不足,对SUS441材料进行高温拉伸试验数据采集,拟合修正了Manson-Coffin公式疲劳寿命预测参数;通过STAR-CCM+软件和ABAQUS软件建立基于体映射法的流-固-热耦合模型,分析了催化器总成在4个工作循环后的热负荷,对SUS441催化器总成进行低周疲劳寿命估计。结果表明,温度场仿真结果与试验数据在误差范围内,模型可信度高;利用修正公式得到应变-低周疲劳寿命曲线,进行寿命预测,通过发动机台架冷热冲击耐久试验证明修正公式比经验通用公式更准确,该结果可为催化器总成设计开发提供指导。  相似文献   

19.
多轴疲劳损伤行为和寿命预测研究关系着复杂加载条件下金属结构件的服役安全,一直受到科学和工程领域的重视.总结多轴低周和高周疲劳试验性能测试一般过程和疲劳行为研究,重点论述多轴非比例加载对低周疲劳和高周疲劳行为的影响,受加载路径,加载载荷和材料类型的影响,非比例加载对材料低周疲劳循环硬化行为和疲劳寿命的影响有差异,对低周疲劳和高周疲劳表现的疲劳行为的影响也有差别,作用机理不尽一致.单轴本构关系通过引入非比例度因子、修正循环强度系数或将多轴加载时的应变等效为单轴应变等方式可推广到多轴疲劳领域.基于应力、应变、能量、临界面和临界面应变能密度法的多轴疲劳寿命预测模型在文中做了综述,疲劳损伤参量中包含能量项的一些多轴疲劳寿命预测方法常被用于多轴低周和高周疲劳寿命预测.缺口件多轴疲劳寿命可采用多轴损伤参量结合局部应力应变法、应力梯度法、应力场强法及临界距离法等进行预测.  相似文献   

20.
依照钛合金裂纹萌生和小裂纹扩展寿命较长的特点,结合目前的检测水平,将钛合金疲劳全寿命分为3个阶段,裂纹由0 mm~0.3 mm为裂纹萌生寿命,0.3 mm~2 mm为小裂纹扩展寿命,2 mm~aC为长裂纹扩展寿命。各阶段因为破坏机理的不同而采用不同的寿命预测方法,从而提高疲劳全寿命预测的准确性。超低间隙钛合金TC4ELI和TA15ELI等幅和谱载荷下疲劳全寿命试验和预测结果表明,裂纹萌生寿命在全寿命中所占比例最大,预测误差最大;长裂纹扩展寿命所占比例最小,预测精度最高;小裂纹扩展寿命所占比例稍大于长裂纹,预测误差大于长裂纹。等幅载荷和谱载荷下全寿命预测误差均符合工程结构疲劳寿命预测的精度要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号