首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
正渗透是以膜两侧汲取液和原料液之间的渗透压差为驱动力,使水从原料液(较低渗透压)一侧自发传递到汲取液(较高渗透压)一侧的膜分离技术。汲取液是影响正渗透分离性能的重要因素之一,然而目前使用的大多数汲取液面临反向溶质渗透严重和再生能耗高的问题,这导致了正渗透性能的显著下降。简要介绍了近几年国内外主要研究的新型汲取液,分析总结了不同汲取液的优点及其应用范围。  相似文献   

2.
综述了汲取液的研究现状,介绍了无机盐、聚合电解质、磁性纳米颗粒、智能凝胶等汲取液的性能,以及汲取液特性对正渗透工艺的影响,并对汲取液的研究前景进行了展望。  相似文献   

3.
研究了聚丙烯酸钠溶液作为汲取液的渗透压特性,并考察了影响水通量和溶质反向渗透量的因素和机制. 结果表明,聚丙烯酸钠浓度与渗透压的关系符合维里方程,第二维里系数对渗透压有较大贡献,聚丙烯酸钠溶液浓度为0.2 g/mL时的渗透压达1.3 Osmol/kg以上,水通量为14.5 L/(m2×h),略高于相同渗透压的氯化钠汲取液[14.0 L/(m2×h)];聚丙烯酸钠汲取液的溶质反向渗透量为1.6 g/(m2×h),低于常规氯化钠汲取液的16.5 g/(m2×h). 升高温度能迅速提高水通量,反向溶质渗透量维持在较低水平,聚丙烯酸钠汲取液适合比常规小分子汲取液更高的操作温度. 聚丙烯酸钠汲取液较高的水通量和较低的溶质反向渗透量表明正渗透性能良好.  相似文献   

4.
开发了3种不同表面负电荷量的温敏磁性纳米颗粒NP1、NP2、NP3,并用作正渗透汲取剂。正渗透实验中三者均表现出良好的汲取性能,特别是NP3,平均产生8.77 L/(m~2·h)的水通量。通过高温条件下的磁回收,三者回收率均达到90%以上。此外,重复使用10次后,3种汲取剂性能未出现明显衰减。细胞毒性实验表明3种汲取剂均无细胞毒性,具有良好的生物相容性。  相似文献   

5.
以天然海水作为正渗透汲取液,构建了正渗透膜浓缩市政污水系统,对比研究CTA-ES和TFC-ES正渗透膜对污染物的截留与浓缩效果,结果表明,2种正渗透膜对有机物和营养元素截留率较高,出水水质较好,在污水浓缩至初始体积的1/6过程中,由于污染物在膜表面的富集作用,FO膜对氨氮和TN浓缩倍数仅为2.1~3.4倍,而对COD和...  相似文献   

6.
正渗透过程中汲取质反向渗透研究进展   总被引:1,自引:0,他引:1  
谢朋  张忠国  孙涛  吴月  吴秋燕  李继定  李珊 《化工进展》2015,34(10):3540-3550
正渗透(FO)作为一种浓度驱动的膜技术,因其膜污染轻、能耗低和回收率高等优点而逐渐成为膜技术领域的研究热点之一。汲取质的反向渗透是正渗透过程中不可忽视的现象,但其研究相对比较滞后。本文主要介绍了汲取质反渗模型的研究进展,分析了渗透压差、膜表面流速、膜结构与膜材料、温度、汲取质种类、膜取向、离子水力半径等因素对汲取质反向渗透的影响情况,并发现汲取质的反向渗透通量可由其浓度或汲取液渗透压的一元多项式表达。总体而言,FO模式的汲取质反渗模型经过不断发展已相对比较完善,而压力阻尼渗透(PRO)模式的反渗模型则缺陷较大,有待进一步研究;此外,关于汲取质反渗过程影响因素及其影响机制的研究对于汲取质、膜材料的选择与开发,以及正渗透过程的优化均具有重要的指导作用,因此会引起越来越多的关注。  相似文献   

7.
正渗透水肥一体化灌溉中化肥驱动液的筛选   总被引:1,自引:0,他引:1  
选择尿素溶液、磷酸二氢钾溶液、硝酸钾溶液、硝酸铵溶液4种化肥溶液作为汲取液,重金属镉溶液作为原料液,CTA膜作为正渗透膜,进行化肥正渗透驱动液的筛选试验。以NaCl-纯水为对照组,设置3次重复试验。定期观测记录质量、EC值、TDS值、体积、流量、进出压力值、温度及pH等变化,计算正向水通量、反向盐通量及正向截留率,并测定溶液中重金属及氮磷钾含量变化。结果表明:性能最佳的化肥汲取液是KH_2PO_4,其水通量高而且溶质返混运动营养损失最低。  相似文献   

8.
减压膜蒸馏法浓缩氧化铝碳分母液的可行性   总被引:1,自引:0,他引:1  
对减压膜蒸馏法浓缩氧化铝碳分母液的可行性进行了研究,系统考察了料液温度、减压侧压力及料液流速等操作条件对水蒸馏通量的影响。结果表明,蒸馏液的pH值约13,减压膜蒸馏对N2AlO2、NaOH及Na2CO,等非挥发性组分的截留率较高,能达到有效浓缩的目的;在实际操作过程中,温度越高、减压侧压力越低及料液流速越大,水蒸馏通量越大。  相似文献   

9.
正渗透技术是近年来新兴的水处理技术,其研发初始即指向各种高难度废水的处理回用及物料分离领域,是一项有广阔发展空间的水处理技术。目前对该技术的研究重点集中在膜材料和汲取液的选择上。从正渗透的原理出发,介绍了正渗透膜材质及汲取液的前沿科技成果,分析了未来正渗透膜材质和汲取液选择的方向。最后,总结了正渗透技术的优势,并对正渗透的未来应用做了展望。  相似文献   

10.
刘翔  何林  从海峰  隋红  李鑫钢 《化工进展》2022,41(11):6158-6166
正渗透作为非压力驱动膜脱盐技术,具有能耗低、膜污染轻、水回收率高等优点,其中汲取液的分离回收是整个正渗透技术的关键。本文提出采用双胺(TEPDA,N,N,N’,N’-四乙基-1,3-丙二胺)“可逆”溶剂经质子化-脱碳可逆循环作为正渗透汲取液进行脱盐的策略。首先,使用TEST软件预测发现,相比传统有机溶剂及单胺溶剂(如DMCHA,N,N-二甲基环己胺),TEPDA具有较低的挥发性、较高的安全性和低生育毒性。正渗透实验发现在两种模式下TEPDA的反向通量选择性均高于DMCHA,证明TEPDA具有更好的正渗透效果。同时发现TEPDA汲取液在PRO模式下效果要优于FO模式。通过对操作条件的优化得到TEPDA汲取液的最优操作温度为30℃,最佳流速为500mL/min。在最优条件下对1%(质量分数)的氯化钠溶液进行5h的连续运行发现,TEPDA汲取液在5h后仍能保持6.09L/(m2·h)的正向渗透通量,具有连续运行的稳定性。循环实验也证明了TEPDA具有较好的循环稳定性。上述结果为双胺(TEPDA)“可逆”溶剂应用于正渗透脱盐领域提供了基础的理论指导。  相似文献   

11.
首先采用共同沉淀法制备了Fe_3O_4磁性纳米粒子,再通过正硅酸四乙酯水解包覆在其表面形成SiO_2壳层,最后将硅烷偶联剂KH-550在Fe_3O_4@SiO_2上进行接枝改性,得到了表面氨基功能化的磁性纳米粒子(A-MNPs)。通过TEM、FTIR、VSM对纳米粒子的微观形貌、化学组成、磁学性能进行了测试,并将其应用于油田含油污水的净化处理。结果显示:表面氨基化的结构使A-MNPs具有pH敏感性,因此可通过改变pH实现A-MNPs的重复使用,当pH=4时A-MNPs达到最佳除油效果。当A-MNPs浓度为200 mg/L时便可将模拟含油污水透光度提高到99.4%;500mg/L的A-MNPs重复使用10次后仍可使净化后含油污水的透光度保持在80%以上;A-MNPs对由不同浓度的氯化钠、高岭土、乳化油、部分水解聚丙烯酰胺(HPAM)组成的多种模拟污水也有较好的净化效果,375 mg/L的A-MNPs可使含油质量浓度10 g/L复杂模拟污水透光度达到86.5%以上。  相似文献   

12.
Fe_3O_4纳米颗粒的制备及其净化含油污水的研究   总被引:1,自引:0,他引:1  
采用沉淀法在碱性条件下不使用任何表面活性剂直接制备出Fe3O4纳米颗粒。用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、XRD粉末衍射仪、振动样品磁强计及激光粒度分析仪对制备的纳米颗粒性质进行了表征。结果显示所制得的Fe3O4颗粒单颗平均粒径约为9 nm,具有超顺磁性,晶型单一,比饱和磁化强度为53.279 emu/g,在水中分散后粒度集中分布在10—26 nm和114—150 nm这2个区域。将其应用于油田污水处理,并与粒度分布在0.5—1.0μm的市售Fe3O4粉末以及活性炭粉末的除油效果进行了对比,研究了3种粉末不同质量分数与净化效果的关系以及磁性纳米颗粒净化油田污水的机理。  相似文献   

13.
本文对旋液分离器的结构、工作原理、应用范围和设计方法进行了阐述。给出了旋液分离器流量、边界粒度、底流与进料体积比的计算公式。笔者利用了自行设计的旋液分离器回收己二酸母液中的己二酸固体颗粒,取得了满意的效果。  相似文献   

14.
《中国涂料》2019,(12):20-27
以环氧树脂、腰果油改性聚酰胺固化剂和各种无毒防锈颜料制备无溶剂环氧污水管内壁长效防腐涂料,该涂料无溶剂、无毒无味,实验表明其具有良好的附着力、耐腐蚀性,适用于污水管道内壁的长效防腐保护,并讨论了各组分对涂层防腐性能的影响。  相似文献   

15.
陈忠祥 《化工时刊》2006,20(10):18-20
以菜籽油为原料,甲醇和多羟基化合物为酯交换剂,并以硫粉和P2O5作为改性剂,合成一种带有极压元素S、P和N的菜籽油基多羟基脂肪酸(酯)化合物。考察和分析了硫化反应的硫化剂添加量、酯交换反应的交换剂/菜籽油(物质的量比)以及磷酸酯化反应的R—OH/P2O5(物质的量比)对产物结构和性能的影响。合成的目标产物可自乳化制成微乳极压加工液,检测2.5%的微乳极压加工液结果表明:该微乳加工液乳化和防锈性能优良,摩檫学的最大无咬卡载荷(PB)1 260 N,表面磨斑直径(WSD)和摩擦系数(μ)的最佳值分别为0.33 mm和0.039.达到并超过了资料报导目前以油为润滑介质的国内同类产品的性能指标。  相似文献   

16.
利用沉淀法制备了椰壳生物炭(CSB)与Fe3O4的复合物磁性椰壳生物炭(MCSB),并将其用于页岩气压裂返排液的研究。对MCSB进行结构表征,以TOC去除率作为评价指标,考察其对压返液的吸附效果。通过研究改性前后CSB的结构形貌、表面化学基团等物理结构,结果表明改性后的CSB依然具有多孔结构并且孔结构增多,其表面变得粗糙,表面积增大;且Fe-O键成功负载于表面,改性成功。MCSB制备最优条件为浸渍比率0.15,热解温度150℃,保留时间30 min,且对于MCSB吸附有机物的影响表现为:浸渍比率>保留时间>热解温度。通过响应面分析法优化吸附条件,获得MCSB处理压返液的最佳工艺条件:吸附时间90 min,搅拌强度104 r/min,吸附剂用量9 g/L。该条件下TOC去除率为61.00%,相较于CSB的TOC去除率增加23.00%。MCSB在处理废水后,经五次试验后依然具有最佳去除率的75.0%,MSCB通过外加磁场从水中分离并重复使用,可作为一种吸附剂有效去除水中的有机污染物,应用前景广阔。  相似文献   

17.
纳米TiO2在有机介质中存在不易分散、贮存稳定性差和易发生二次团聚等问题,环氧树脂存在韧性差、耐冲击性欠佳、易开裂、固化后性脆等缺点,针对这些问题研究了一种制备纳米TiO2分散液的方法,并对环氧树脂进行端羧基丁腈橡胶改性,制成无溶剂环氧防腐涂料.傅里叶变换红外光谱(FT-IR)测试、动态光散射(DLS)、涂层断面扫描电镜(SEM)和电化学性能测试(EIS)的结果表明:纳米粒子能得到有效改性,且分散液粒径均匀、稳定,不易发生二次团聚;适量分散液能改善材料自身存在孔洞和裂痕的缺陷,与材料结合性好,整体上提高了涂层的基础物理性能和防腐效果.  相似文献   

18.
《水处理技术》2021,47(6):39-44,48
通过界面聚合的方式,将氧化石墨烯(GO)改性的锆基金属有机骨架(FUM)材料掺杂到纳米复合正渗透膜的聚酰胺(PA)中,制备了一种新型的GO@FUM纳米复合正渗透膜,对其进行了分析表征,测试了其渗透和抗污染性能。结果表明,随着GO@FUM纳米材料添加量的增加,膜的粗糙度、孔隙率、亲水性均显著提高。当添加质量分数为0.04%时性能为佳:FO模式下,纯水通量相比未改性的膜提升约35%,反向盐通量下降约49%,且J_S/J_V最低,表现出更高的选择性;在处理以BSA和SA为代表的有机污染物方面,GO@FUM纳米复合正渗透膜表现出更强的抗污染性能。  相似文献   

19.
以毛竹为原料,高压均质法制备纳米纤丝化纤维素(NFC),再采用溶胶―凝胶法制备NFC/二氧化硅(SiO_2)气凝胶。采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱(EDS)等对其进行表征,通过改变正硅酸乙酯/无水乙醇的体积比获得样品微观形貌较佳的反应工艺条件,并采用十八烷基三氯硅烷的正己烷溶液对NFC/SiO_2气凝胶进行疏水改性,用接触角测量仪测试改性NFC/SiO_2气凝胶的疏水性能。研究结果表明NFC/SiO_2气凝胶在正硅酸乙酯/无水乙醇体积比为1.25%时,二氧化硅复合效率高,且所获得的气凝胶形貌较好,二氧化硅以颗粒的形式附着在纳米纤丝化纤维素表面。改性NFC/SiO_2气凝胶接触角为132°,达到疏水状态。  相似文献   

20.
以Al2O3为载体,制备了掺杂型纳米MnO2/Al2O3催化剂,考查了最佳制备条件;研究了臭氧催化氧化法处理驱油废水二级生化处理出水的效果及其影响因素.结果表明,制备的纳米MnO2催化剂的XRD谱图中可以明显看到α-MnO2的衍射峰;动态光散射仪(DLS)分析表明纳米MnO2的粒度主要分布在80~180 nm之间,从XRD、扫描电镜(SEM)和透射电镜(TEM)表征可知.α-MnO2主要呈球形,其直径在25~50 nm之间;催化剂的比表面积达到157.48 m2·g-1.催化剂的最佳焙烧温度和焙烧时间分别为550℃和4h;活性组分含量为6%时,MnO2/A12 O3催化剂的催化活性最强.当进水COD为100~ 120 mg·L-1、MnO2/Al2 O3催化剂的投量为70 mg·L-、臭氧投量为240 mg·h-1,催化臭氧氧化30 min时,有机物的去除率达到55%以上,出水COD指标满足《污水综合排放标准》一级A标准.·OH氧化在臭氧催化氧化降解有机污染物体系中起主导作用,其平均产生速率为30.84 μmmol·L-1·min-1.制备的掺杂型纳米MnO2/Al2O3催化剂具有制备方法简单、催化效率高、使用寿命长、二次污染小等优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号