首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在连续退火水淬模拟试验装置上对0.18C-0.4Si-2.0Mn微合金化超高强度冷轧薄带钢进行了不同工艺的连续退火水淬试验,并对其显微组织与拉伸性能进行了研究。结果表明:保温温度低于800℃时,保温时间对组织和性能的影响显著,其组织主要为片状马氏体;当温度高于830℃时,保温时间对抗拉强度和伸长率影响较小,组织主要为板条马氏体;随保温温度和水淬温度的升高,试验钢的抗拉强度由1 150 MPa逐渐升至1 700 MPa,屈服强度由600 MPa增至1 600MPa,断后伸长率则由8.5%逐渐降至2%;水淬工艺的保温温度和水淬温度分别在830℃和750℃或保温温度在850℃和水淬温度高于700℃时,试验钢的抗拉强度可达1 500MPa以上,屈服强度可达1 200MPa。  相似文献   

2.
将12Cr1MoV钢加热至不同温度(650,750,850,950,1 050,1 150℃)保温3 h并分别进行空冷和水冷来模拟火灾现场的火烧过程,采用金相检测、小冲杆试验、拉伸试验和硬度测试研究了火烧温度和冷却方式对试验钢显微组织和力学性能的影响。结果表明:当火烧温度不高于750℃时,空冷和水冷方式下试验钢的显微组织均主要为铁素体、珠光体和碳化物,强度、断后伸长率和硬度随火烧温度的变化很小;在空冷方式下,当火烧温度高于750℃时,随着火烧温度升高,试验钢的晶粒尺寸变大,珠光体含量增加,使得强度增大,断后伸长率降低;在水冷方式下,当火烧温度高于750℃时,试验钢组织中出现马氏体,随着火烧温度升高,马氏体含量增加,试验钢强度和硬度提高,断后伸长率降低。  相似文献   

3.
在实验室制备了590MPa级冷轧热镀锌双相钢板,采用SEM、TEM和拉伸试验等方法考察了退火温度、卷取温度等工艺参数对该钢显微组织和力学性能的影响。结果表明:经750~820℃保温100s退火后,可以获得抗拉强度615MPa以上、伸长率高达21%的综合性能良好的钢板;随着退火温度的升高,抗拉强度和屈服强度都会增大,伸长率则以820℃退火的最好,其次是800℃退火的,而750℃和780℃退火的则差一些;热轧后650℃卷取的钢板经冷轧和热镀锌退火后,其强度明显高于690℃卷取的。  相似文献   

4.
采用电沉积法制备得到厚度约600μm的块体纳米晶铜,并在100~250℃下进行退火处理,研究了退火温度对纳米晶铜微观结构和力学性能的影响。结果表明:未退火及退火后纳米晶铜均呈现面心立方结构;随着退火温度从100℃增加至250℃,纳米晶铜(200)晶面的衍射峰强度逐渐增强。随着退火温度的升高,纳米晶铜的抗拉强度逐渐减小,断后伸长率先增大后减小,表面拉伸变形带和拉伸断口上大而深的韧窝数量均增加;200℃退火后纳米晶铜的拉伸性能较佳,抗拉强度高约500 MPa,断后伸长率近30.5%。  相似文献   

5.
在Gleeble-3500型热模拟试验机上模拟冷轧超高强度双相钢的连续退火,采用扫描电镜和拉伸试验机研究了连续退火过程中退火温度、退火时间和过时效温度对该钢组织与力学性能的影响。结果表明:随着退火温度的升高,该钢的屈服强度和抗拉强度下降,伸长率提高,显微组织(铁素体+马氏体和少量的粒状非马氏体组织)中粒状非马氏体增多;退火时间对该钢力学性能的影响较小;随着过时效温度的升高其抗拉强度呈下降趋势,屈服强度、伸长率和屈强比呈上升趋势,当过时效温度高于360℃时,则出现了屈服平台。  相似文献   

6.
对镍铁合金材料进行125~450℃保温2h的退火处理,TEM观察结果表明,镍铁合金材料随着热处理温度的升高,晶粒尺寸呈现长大的趋势,当350℃时,晶粒尺寸出现一个突变长大,平均晶粒尺寸200nm。对热处理后的镍铁合金材料进行单向拉伸试验,结果表明,当温度300℃时,合金材料的拉伸强度基本没有发生较大的变化,最高抗拉强度1 700MPa;当温度300℃时,拉伸强度急剧降低。  相似文献   

7.
通过98%大变形异步-同步混合轧制的方法,制备了超细晶镍基合金,并对退火后该合金的显微组织与拉伸性能进行了研究。结果表明:轧制后镍基合金组织得到显著细化,经700℃退火后晶粒尺寸在200nm以内,经800℃退火后晶粒尺寸仍然在300nm之内,超细晶镍基合金具有良好的组织稳定性;轧制后镍基合金的强度得到显著提高,经700℃和800℃退火后仍具有较高的强度,尤其经700℃退火后,其屈服强度及抗拉强度分别从轧制前的243 MPa和679 MPa提高到了1 907 MPa和1 949 MPa;强度的提高和良好的组织稳定性主要归因于超细晶镍基合金在退火过程中析出大量均匀弥散分布的纳米γ′相。  相似文献   

8.
通过显微组织观察和拉伸试验研究了工序间退火热处理温度对冷拔态0Cr21Ni6Mn9N奥氏体不锈钢管显微组织与拉伸性能的影响。结果表明:试验钢管在600℃以上温度退火处理后,晶界上明显析出了碳化物(Cr23C6),晶粒内有退火孪晶形成,孪晶密度随温度升高而增加;试验钢管经200~550℃处理后,强度稍有提高,塑性略有下降;当热处理温度高于600℃时,强度明显下降,塑性则明显提高。  相似文献   

9.
通过增加CoCrFeMnNi合金中的铁含量,制备了低成本富铁中熵合金Fe60(CoCrNiMn)40(原子分数/%),对其进行了1 200℃×3 h均匀化处理、轧制和900℃×1 h退火处理,研究了该合金的显微组织、拉伸性能及耐腐蚀性能等。结果表明:试验合金由面心立方结构的单一奥氏体相组成,再结晶晶粒大小均匀,平均晶粒尺寸约为17.8μm,再结晶晶粒内出现退火孪晶;试验合金在室温下表现出优异的拉伸性能和应变硬化能力以及在NaCl溶液中显著的自钝化行为和优异的耐腐蚀性能,其抗拉强度为603 MPa,屈服强度为226 MPa,断后伸长率为81.6%,在NaCl溶液中的自腐蚀电位为-0.461 6 V,自腐蚀电流密度为2.74×10-6 A·cm-2,电荷转移电阻为2.94×105Ω·cm2;与其他富铁多组分合金相比,试验合金的抗拉强度和断后伸长率更大,塑性应变高出10%以上,自腐蚀电流密度更低。试验合金的拉伸断口由均匀分布的韧窝组成,拉伸断裂方式为韧性断裂;在...  相似文献   

10.
将初始组织为马氏体的0.2C-1.6Si-1.8Mn钢在不同温度(840,870,910℃)奥氏体化后进行淬火-配分(Q&P)处理,研究了奥氏体化温度对该钢显微组织与拉伸性能的影响。结果表明:当奥氏体化温度在两相区时,Q&P处理后试验钢中的铁素体主要呈带状,残余奥氏体呈块状和薄带状;随着奥氏体化温度升高,铁素体和残余奥氏体含量减少,马氏体含量增加,对应的屈服强度和抗拉强度增大,断后伸长率和强塑积下降;840℃奥氏体化+Q&P处理后试验钢更高的断后伸长率与其更高含量的残余奥氏体且残余奥氏体呈块状和薄带状2种形态有关,这能有效扩展相变诱导塑性效应区间。  相似文献   

11.
采用液态金属冷却(LMC)法制备了新型Ni3Al基单晶高温合金并进行1 290℃×4 h固溶处理和1 000℃×4 h时效处理,研究了合金的显微组织与不同温度(23~900℃)下的拉伸性能。结果表明:经固溶与时效处理后,试验合金组织中的γ′相呈规则的立方体形状,平均尺寸约为0.55μm,体积分数约为72%;合金的抗拉强度与屈服强度随着温度升高先增大后减小,且均在800℃时达到峰值,分别为856,808 MPa;合金断后伸长率的变化规律与强度相反,在800℃达到最小值11%;在600℃及以下温度拉伸时合金的断裂模式为纯剪切型断裂,在760℃拉伸时为纯剪切断裂与微孔聚集型共存的混合型断裂,当拉伸温度在800~900℃范围内时为微孔聚集型断裂。  相似文献   

12.
对1A80铝片进行了不同工艺的中间退火,再冷轧得到铝箔,通过拉伸试验机、光学显微镜及X射线衍射仪等研究了退火工艺对铝材拉伸性能、显微组织和织构的影响。结果表明:中间退火工艺对铝片和铝箔力学性能和显微组织有明显的影响;适当温度(250℃)的中间退火可以提高其抗拉强度和伸长率,改善其加工性能,且有助于保持其中的冷轧纤维组织形态、降低晶粒度,不影响成品退火后铝箔的主要织构;当中间退火温度高于300℃时,铝材会出现再结晶,使其拉伸性能明显下降。  相似文献   

13.
在不同温度(700,730,800,900,1 000,1 100,1 200℃)下对低层错能Fe-29.8Mn-5.0Si-1.7Al合金钢冷轧板进行退火处理,研究了原始奥氏体晶粒尺寸对其准静态力学性能和变形过程中相变行为的影响规律。结果表明:随退火温度(高于730℃)升高,合金钢发生明显静态再结晶,晶粒尺寸增加,组织均为单一奥氏体;再结晶退火合金钢在拉伸变形过程中均发生ε马氏体相变,细晶(奥氏体晶粒尺寸小于21μm)有助于合金钢获得高屈服强度和高抗拉强度,粗晶(奥氏体晶粒尺寸大于90μm)内部形成了均匀分布且相互交截的多变体ε马氏体,有利于提高其塑性。  相似文献   

14.
对挤压态和冷轧态Gr.38钛合金管分别进行了不同温度下的固溶+时效和退火热处理,研究了热处理温度对其显微组织和拉伸性能的影响。结果表明:挤压管经固溶处理后的组织为由初生α相和β相转变组织组成的双相组织,固溶+时效处理后的抗拉强度和屈服强度随时效温度的升高先增后降,伸长率和断面收缩率则呈上升趋势;经900℃×1h固溶+500℃×4h时效处理后,挤压管达到最佳的强塑性匹配,抗拉强度、屈服强度、伸长率、断面收缩率分别为1 135 MPa,912 MPa,17%,45%;冷轧管经退火处理后的显微组织由等轴α相和晶间β相组成,随着退火温度的升高,其抗拉强度、屈服强度逐渐降低,伸长率逐渐增大;在830℃退火1h后伸长率最高,达到27%,抗拉强度和屈服强度分别为937,807 MPa。  相似文献   

15.
对轨道交通用20MnV弹簧钢进行了不同温度(780,830,880,930,980℃)和不同时间(0.5,0.75,1,1.25h)的正火处理,研究了正火温度和正火时间对试验钢显微组织和力学性能的影响。结果表明:随着正火温度升高,20MnV弹簧钢组织由不均匀铁素体和粒状贝氏体转变为等轴铁素体和块状铁素体;当正火温度低于830℃时,随着正火温度的升高,试验钢的屈服强度和抗拉强度降低,断后伸长率和低温冲击功增大;当正火温度高于830℃后,试验钢的屈服强度和抗拉强度均随着正火温度升高而增加;在不同正火时间下,试验钢的显微组织均为等轴铁素体和块状珠光体;随着正火时间的延长,试验钢的屈服强度、抗拉强度、断后伸长率、低温冲击功均先增后降;当正火温度为930℃、正火时间为1h时,试验钢的力学性能最佳。  相似文献   

16.
Fe-Mn-Si-Al相变诱导塑性钢因具有较低屈服强度和良好低周疲劳性能,有潜力替代现有抗震用低屈服点钢制造钢阻尼器。对试验用钢进行准静态拉伸和低周疲劳试验,并借助多种组织表征方法研究试验用钢变形前后的微观组织演变,揭示VC析出相及奥氏体晶粒尺寸对其力学性能的影响规律及作用机理。结果表明:奥氏体晶粒粗化可以促进ε马氏体生成交叉状多变体,从而在准静态拉伸过程中,提高试验用钢断后伸长率;而在低周疲劳变形过程中,交叉状多变体削弱ε马氏体相变可逆性,使其疲劳寿命降低。VC析出相有助于提高试验用钢的屈服强度和抗拉强度,但其对ε马氏体生长具有抑制作用,使断后伸长率降低。在低周疲劳变形过程中,VC析出相钉扎ε马氏体/奥氏体两相界面,抑制ε马氏体逆相变,从而使试验用钢的循环加工硬化程度显著提高,低周疲劳寿命降低。  相似文献   

17.
锰和硅添加对重度冷轧及退火后珠光体钢力学性能的影响   总被引:1,自引:0,他引:1  
研究了几种锰、硅含量的Fe-0.8C合金在重度冷轧及退火后珠光体的显微组织变化及拉伸性能。结果表明,锰、硅的添加可使90%冷轧及450-650℃退火后共析珠光体的抗拉强度与屈服点均大幅度提高,但它们对冷轧珠光体延性的影响却是可以忽略的;与锰相比,硅的添加对冷轧及退火后珠光体钢延性的提高更有效,尤其当钢的强度较高时;锰、硅复合添加对重度冷轧及退火珠光体钢力学性能的提高也同样非常有效;经重度冷轧及低温(450℃)短时间退火,含硅或锰钢的抗拉强度和屈服点与冷轧态试样相比几乎没有下降,但其延性却明显提高;以硅、锰合金化的共析珠光体钢经90%冷轧及在450℃退火30-120s后强度-延性平衡达到最佳。  相似文献   

18.
为满足用户定制的C250b门架型钢屈服强度不低于500 MPa,抗拉强度不低于610 MPa,断后伸长率不小于17%,-20℃冲击功不低于27 J的指标要求,设计了C-Mn-Nb-V-Cr-N体系钢,参考实际生产工艺,在不同的开轧温度和终轧温度下对试验钢进行精轧,研究了试验钢的组织和力学性能,分析了其强化机制.结果表明:设计试验钢的化学成分(质量分数/%)为0.16~0.20 C,0.40~0.50 Si,1.50~1.60 Mn,0.35~0.45 Cr,微量Nb+V,试验钢经精轧和空冷后的组织为铁素体+珠光体组织;当开轧温度控制在920~970℃,终轧温度控制在820~870℃时,试验钢的平均晶粒尺寸不大于7μm,力学性能参数满足指标要求;试验钢固溶强化对屈服强度的贡献值约为240 MPa,细晶强化的贡献值为177~191 MPa,第二相析出强化的贡献值约为100 MPa.  相似文献   

19.
研究了40Cr钢的低温超塑性。结果表明:经3次840℃×40 min水淬+650℃×2h回火的超塑性预处理后,40Cr钢的组织为回火索氏体,晶粒尺寸为5-10μm,在温度为650℃、初始应变速率为3.16×10-4 s-1的拉伸变形条件下,流变应力为:108.1 MPa,断后伸长率为254%,应变速率敏感性指数m值为0.221,超塑变形的主要机制可描述为原子扩散控制的晶界滑动。  相似文献   

20.
研究了冷轧压下率和退火工艺对St37-2G结构用冷轧钢板显微组织和力学性能的影响,并优化了生产工艺。结果表明:试验钢板经不同压下率冷轧并经670℃×5h退火后的显微组织均由铁素体、少量渗碳体和微量珠光体组成,仍保留着渗碳体沿轧向呈纤维状分布的特征;随着冷轧压下率的增大,试验钢板的硬度先增大后减小,在冷轧压下率60%时达到最大值;随退火升温速率的增大,试验钢板的屈服强度、抗拉强度以及塑性应变比明显下降,伸长率和加工硬化指数变化不大;最优的冷轧和退火工艺为冷轧压下率40%~50%,退火温度670℃,升温速率20℃·h-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号