首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
电解水制氢是极具发展应用前景的绿色技术,使用低成本碳材料负载贵金属作为催化剂基底,是减小析氢催化剂贵金属负载量和优化其性能的有效手段。采用配位聚合法,通过调控pH得到了由纳米片自组装形成的具有高比表面积的前驱体微球,再通过离子交换和高温焙烧将Pt纳米颗粒均匀负载在氮掺杂碳化钼表面,制备出了Pt/N-Mo2C NFs。因Pt纳米颗粒具有多层级结构的N-Mo2C上的高度分散以及Pt与N-Mo2C基底之间的协同作用,它展现出十分优异的析氢性能。Pt/N-Mo2C NFs拥有较低的过电位(44 mV/η10和137 mV/η100),和Tafel斜率为46.2 mV/dec,同时具有良好的稳定性。研究结果对于设计低负载量的贵金属催化剂具有一定的借鉴意义。  相似文献   

2.
综述了Co3O4及掺杂材料的性质、结构和电催化性能。Co3O4中的钴离子是Co2+和Co3+的混合价。由于Co3O4具有独特的尖晶石晶体结构,有利于Co2+和Co3+离子之间的电子传导,具有空电子轨道且易实现晶格氧化可作为氧还原反应(ORR)催化剂。综述了Co3O4的电催化性能的影响因素主要由其表面积和电子态决定,表面积通过调整纳米结构的大小和形貌来调节,电子态可以通过掺入第三种元素或氧空位来调控。综述了Co3O4掺杂不同材料后均表现出优异的催化性能与良好甲醇耐受性。Co3O4与Pd掺杂可以提高金属Pd在载体表面的分散性,降低金属颗粒团聚;Co3O4与P的组合使催化剂的内在活性增强;Co...  相似文献   

3.
本研究针对α-Fe2O3中空穴迁移距离短(2~4 nm)和水氧化动力学缓慢的问题, 通过钯催化氧化法构筑了有序氧空位掺杂的一维α-Fe2O3纳米带(α-Fe2O3 NBs)阵列, 以提高光电催化分解水产氢性能。采用不同表征方法对光阳极进行形貌、结构分析。结果表明:一维α-Fe2O3 NBs表面形成了有序氧空位, 周期为1.48 nm, 对应于10倍的(11¯2)晶面间距。光电化学及产氢性能表明:α-Fe2O3 NBs起始电位为0.587 V (vs. RHE), 在1.6 V (vs. RHE)时光电流密度为3.3 mA·cm-2, 产氢速率达29.46 μmol·cm-2·h-1。这归因于引入有序氧空位提高了载流子密度, 促进了空穴的分离传输, 并作为表面活性位点, 促使表面水氧化反应加速进行。  相似文献   

4.
贵金属Pt具有最高的析氢活性,但其高昂的价格限制了大面积推广应用。因此,研究开发高活性、低成本的析氢电催化材料,对发展氢能产业具有重要意义。利用二步水热反应法成功制备单原子铁-硫化钼(Fe-MoS2)电催化材料,并采用X-射线粉末衍射(XRD)、高角环形暗场扫描透射电子显微镜(HAADF-STEM)成像技术、能量色散X射线光谱(EDX)、电子能谱测定(XPS)对Fe-MoS2进行了表征。XRD结果表明,所制备Fe-MoS2样品的粉末衍射曲线与晶态2H-MoS2的标准卡(JCPDS 37-1492)相一致,表明Fe-MoS2与2H-MoS2具有相同的晶型结构;球差电镜分析表明,铁单原子均匀分布于MoS2表面;EDX与XPS分析进一步表明铁单原子存在于MoS2结构中。采用线性扫描伏安(LSV)法研究了Fe-MoS2的析氢性能。结果表明,最佳条件下制备的Fe-MoS2,其析氢...  相似文献   

5.
电解水包括析氢反应(HER)与析氧反应(OER),由于OER是复杂的4电子转移过程,制作出具有优异耐久性的高活性的非贵金属OER电催化剂对于电解水至关重要。为了降低成本,选择304型不锈钢网(SS)作为基体,使用电沉积的方法制备钴-镍双氢氧化物,利用真空煅烧的方法制备钴-镍氧化物。使用XRD、SEM、TEM、XPS和电化学工作站对Co2Ni1O4/SS复合材料的晶体结构、形貌和电催化OER性能进行了研究。结果表明:电沉积制备的钴-镍双氢氧化物煅烧之后转变成尖晶石结构的钴-镍氧化物;在不锈钢表面成功合成了大量密集的层状结构;在1.0 mol/L KOH电解液中,Co2Ni1O4/SS电极表现出优异的OER电催化性能,达到10 mA·cm?2电流密度时所需要的过电位仅为240 mV,Tafel斜率为53.92 mV·dec?1,并且表现出优异的稳定性。   相似文献   

6.
非质子锂氧电池基于锂金属与氧的可逆反应生成Li2O2,可提供极高的理论能量密度.然而,Li2O2的成核/消除机制仍然不清楚.因此,构建能在原子水平上深入了解催化机理的催化剂体系,是开发高性能锂氧电池的关键.在此,我们报道了一种在富氧空位的Co3O4(Pd1-Co3O4x)中实现Pd单原子选择性锚定的策略.原子水平表征技术揭示了Pd原子优先地结合到缺陷Co3O4的四面体位点.理论计算表明,选择性锚定的Pd单原子与氧空位的耦合引起了明显的电荷重分布,这可以有效地提高Pd 4d轨道在费米能级附近的能带占用率,促进电子转移,有利于中间体的吸附.这种双重相互作用不仅可以调节放电过程中Li2O2的成核生长过程,而且有利于Li2O2上的电子云的离域,减弱Li-O键的强度,从而...  相似文献   

7.
开发高性能、稳定的双功能电催化剂是一个具有挑战性的课题.本工作基于界面工程和空位工程,通过电沉积成功构建了一种富含氧空位的异质结催化剂.所制备的催化剂VO-Co(OH)2/CoN在碱性电解质中具有良好的双功能催化活性和稳定性,在10 mA cm-2条件下,析氢反应的过电位为52 mV,析氧反应的过电位为206 mV,且其全水分解电压仅为1.518 V.更重要的是,实验和密度泛函理论计算都证实了VO-Co(OH)2/CoN优异的双功能活性归因于异质界面和氧空位的协同催化.在异质界面附近,一个Co原子和一个氧空位共同形成一个活性Co空位对,通过改变反应路径协同促进水分解.氧空位不仅作为活性位点直接参与催化过程,还能有效调节电子密度,提高催化剂的导电性.本工作对于指导高性能催化剂的设计和深入了解催化机理具有重要意义.  相似文献   

8.
采用简单的水热法制备了Sn掺杂的有机框架化合物(MOFs),再煅烧衍生出Sn掺杂In2O3(Sn-In2O3)气敏材料。表征结果表明,材料的形貌是中空微米棒且材料的比表面积较大、Sn元素成功被掺杂,材料表面的氧空位浓度也较大。气敏测试结果表明,Sn-In2O3中空微米棒材料对低浓度Cl2具有较大的灵敏度,理论最低检测限低至0.37×10-9。通过气敏机理分析,其优良的Cl2气敏性能主要归因于材料的中空结构、大的比表面积和丰富的氧空位,这主要来源于MOFs模板法的制备和Sn元素的掺杂。  相似文献   

9.
采用平面波超软赝势方法研究了Pt和Au修饰锐钛矿型TiO2(101)面的结构稳定性及电子结构。结果显示贵金属原子在TiO2(101)符合化学计量比的条件下, 在其表面的吸附作用不强, 对电子结构的影响也较小。但是发现在富O条件下, Pt和Au原子容易吸附在表面Ti空位的位置, 与Au原子不同, Pt原子有从TiO2表面扩散进入体相晶格中的趋势。而在富Ti条件下, Pt和Au原子容易吸附在O1空位的位置。对可能存在的几种空位缺陷吸附模型进行了电子结构的计算。结果表明: 空位缺陷的产生不仅有利于Pt和Au原子“湿化”TiO2(101)表面, 也有利于带隙中产生贵金属原子的5d杂质能级。  相似文献   

10.
通过硝酸根电化学还原反应将NO3-转化为NH3是一种有前景的制氨和“绿氢”储存方案.Co3O4对于硝酸根还原析氨反应表现出较高的析氨法拉第效率和稳定性,有望成为理想的催化剂.然而,在Co3O4上发生硝酸根还原反应仍需较高的过电位,从而阻碍了能量转换效率的提升.本文中,我们合成了Cu掺杂Co3O4多孔空心纳米球用作硝酸根还原析氨催化剂.Cu掺杂在保障析氨法拉第效率和稳定性的前提下大幅降低了反应所需的过电位,有效提高了析氨速率.实验和理论分析均表明,Cu掺杂使Co3O4的最高占据态能量上移,缩小了Co3O4的最高占据态与NO3-的最低未占据分子轨道之间的能垒,从而降低了电子从Co3O4向NO3  相似文献   

11.
丁仕久  刘亮  刘培涛  冯爱玲 《功能材料》2022,(11):11136-11142
设计和合成具有高活性、耐久性的非贵金属电解水催化剂对能量转化和储存具有重要意义。在研究中,通过硝酸铁、硫代乙酰胺与二水钼酸钠在无水乙醇中的水热反应制备了铁掺杂二硫化钼(Fe-MoS2)的纳米材料。Fe-MoS2具有较高的析氧反应(OER)活性,在1 mol/L KOH电解质中,当电流密度为10 mA·cm-2时过电位为250 mV,塔菲尔斜率为219 mV·dec-1,而且Fe-MoS2在这些条件下可稳定超过10 h以上。同时其具有良好的析氢反应(HER)活性,在0.5 mol/L H2SO4电解质中,当电流密度为10 mA cm-2时过电位为220 mV。此外,在1 mol/L KOH电解液中,Fe-MoS2/C(阳极)//Fe-MoS2/C(阴极)两电极体系具有良好的电解水催化活性,在10 mA cm-2的电流密度下低电位为1.77 V。为开发...  相似文献   

12.
缺陷位点的引入可以通过增加对反应中间体的亲和力来提高催化剂的催化能力.纳米材料中存在多种缺陷类型,如阳离子缺陷和阴离子缺陷.不同的缺陷位点对电催化性能的贡献不同.因此,构筑缺陷必须精准、明确,以便于确定最优的缺陷类型,促进电化学反应.在这项工作中,我们以钴空位为例,分别成功合成了二价钴空位(Co3O 4-VCo(II))和三价钴空位(Co3O4-VCo(III))的Co3O4.电化学结果表明,钴空位的引入可以显著提高Co3O4的电催化性能. Co3O4-VCo(II)表现出最突出的析氧反应(OER)性能,反应动力学速率最快. X射线光电子能谱分析表明,在OER过程中, VCo(II)的存在可以使CoOOH活性位点快速形成.密度泛函理论计算表明,钴空位的引入使Co3O4拥有类似金属的导电性. VCo(II)的存在使得O p带中心靠近费米能级,自由能势垒降低,电催化剂表面氧...  相似文献   

13.
Fe3O4被认为是一种储锂性能优异的锂离子电池负极材料,但目前仍存在导电性差和充放电过程体积膨胀问题。文中以L-精氨酸、对苯二甲醛和九水硝酸铁为原料,通过溶剂热反应得到铁离子掺杂L-精氨酸聚合物(W-Fe3O4@NC precursors),随后高温热解制备了杨梅状碳包覆四氧化三铁(W-Fe3O4@NC)复合负极材料。对W-Fe3O4@NC的形貌、表面化学结构、孔隙率和在锂离子电池负极中的电化学性能进行了表征。结果表明,得益于独特的杨梅状形貌、有益的氮掺杂、高度分散的Fe3O4纳米微粒和均匀的碳包覆,W-Fe3O4@NC在1 A/g电流密度下循环800圈后比容量高达815.1 m Ah/g,在5 A/g的大电流密度下,比容量仍保持在232 mAh/g,循环稳定性和倍率性能显著优于纯碳材料(NC)和市售Fe3  相似文献   

14.
提出一种通过增加反应物中硫脲比例来合成层间距宽化的二硫化钼(E-MoS2)的一步合成方法。该方法中,过量硫脲高温下转化为硫氰酸铵原位嵌入MoS2层间使层间距宽化,避免传统E-MoS2的复杂合成过程和外来插层分子的引入。该方法合成的E-MoS2微米花展现出良好的析氢性能:在电流密度为-10 mA/cm2时的析氢过电位为285 mV,塔菲尔斜率为68.5 mV/dec,远低原始MoS2的析氢过电位(588 mV)和塔菲尔斜率(122.2 mV/dec)。该E-MoS2析氢性能的提升可归因于:层间距的宽化优化MoS2的电子结构,从而提高导电性,降低氢吸附自由能;且合成过程中硫氰酸铵分子的原位嵌入抑制MoS2的生长,减小其微米花尺寸,使其暴露出更多的活性位点。因此,该E-MoS2微米花有望成为一种有前景的非贵金属析氢电催化剂。  相似文献   

15.
以凹凸棒石(ATP)为载体, 通过原位沉积, 结合冷冻干燥、程序焙烧工艺在其表面负载不同质量分数的类石墨相氮化碳(g-C3N4)薄层材料, 制备系列ATP/g-C3N4复合材料用于电催化析氧反应, 产物标识为ATP/g-C3N4-w (质量分数w = mATP: (mATP + mg-C3N4)=0.33、0.40、0.50、0.67), 并研究在0.1 mol/L KOH的电解液中的电催化析氧性能。结果表明: g-C3N4薄层通过Si-O-C键牢固负载于凹凸棒石表面, 从而有效调变g-C3N4表面的电子层结构, 提供更多的催化活性位点。电催化析氧测试的结果表明: ATP/g-C3N4-0.50具有最优的析氧催化性能, 在10 mA/cm 2电流密度下其析氧过电位为410 mV, 塔菲尔斜率为118 mV/dec, 并表现出优异的析氧稳定性。  相似文献   

16.
处于纳米尺度的磷化物及其与贵金属构成的复合材料具有独特的物理和化学性质,在电催化领域有广泛应用。例如,在甲醇电催化氧化反应中,由于磷(P)比金属铂(Pt)或钯(Pd)等具有更大的电负性,金属原子的外层电子被P吸引而偏向P原子,从而间接提高了Pt或Pd对CO类中间产物的耐受性;在电解水析氢反应中,P可以作为质子受体,增强H+在金属上的吸附,从而促进析氢反应;在电解水析氧反应中,金属基磷化物容易被氧化成氧化物和氢氧化物,从而形成氧化物/氢氧化物-磷化物界面,进一步促进析氧反应。纳米颗粒的催化性能很大程度上取决于催化剂的结构、组分、组分之间的相互作用以及活性位点的电子结构,因此,对金属基磷化物基纳米复合材料的这些性质进行合理调控是提升其电催化性能的关键。本文所综述的材料范围包含金属基磷化物本身及其与贵金属构成的纳米复合材料,首先概括介绍金属基磷化物基纳米复合材料的合成方法和表征技术,进而阐述如何利用复合材料中晶格应变和电子耦合等物理效应提升电催化活性和稳定性。最后,围绕金属基磷化物基纳米复合材料电催化性能进一步提升的问题,对其未来合成策略和发展进行展望。  相似文献   

17.
为了探索镧系与非镧系元素对ZnO-B2O3-SiO2系统玻璃热稳定性及结构的影响, 本研究采用差示扫描量热仪(DSC)和傅立叶变化红外光谱仪(FTIR)开展了La2O3和Y2O3掺杂对该系统玻璃析晶行为、热稳定性和结构变化的系统研究。结果表明: 当La2O3掺杂量大于8mol%、Y2O3掺杂量大于6mol%时, 60ZnO-30B2O3-10SiO2系统玻璃开始出现析晶现象; 当La2O3掺杂量为4mol%、Y2O3掺杂量为2mol%时, 该玻璃的热稳定性能最好。结构研究表明, 少量添加稀土氧化物会使该系统玻璃的网络链接程度提高, 而当掺杂量超过一定量时会使该系统玻璃的网络链接程度降低。  相似文献   

18.
以竹粉废料为原料,利用尿素热解制得氮掺杂生物炭(NBC),再通过原位沉积法在生物炭表面生长纳米Fe3O4,得到Fe3O4-氮掺杂生物炭复合材料(NBC-Fe3O4)。以KH2PO4溶液模拟含磷废水测试了NBC-Fe3O4复合材料的吸附性能,结果表明复合材料在pH值7时达到最佳吸附效果,吸附效率接近100%,最大吸附量为20.3 mg/g;复合材料对磷的吸附符合朗格缪尔模型和二级动力学方程。另外,复合材料中含有大量的Fe(Ⅱ)和Fe(Ⅲ),可以通过外加H2O2溶液形成芬顿氧化体系,实现同步催化降解腐殖酸和吸附磷酸根污染物。  相似文献   

19.
探索具有优异导电性和稳定性的非贵金属电催化剂对氢经济至关重要.本研究将杂原子掺杂和石墨烯包覆相结合,以控制NiCo2S4(NCS)蛋黄壳微球的电子性能,并抵抗酸性介质中H2O和O2的腐蚀.密度泛函理论(DFT)模拟结合综合表征和实验首次揭示了在NCS中引入P杂原子不仅加速了电子从体相向表面的转移动力学,而且降低了掺杂P原子附近活性S位上的析氢反应势垒.利用DFT计算的穿透能垒预测了rGO覆盖层在P掺杂NCS (P-NCS)表面对质子的渗透性和对H2O和O2分子的抵抗性等重要功能,并用X射线光电子能谱对新催化剂和回收催化剂进行了验证.利用P掺杂剂和rGO覆盖层分别辅助电荷传递和质子传递,通过二者的协同作用获得了催化活性和耐久性之间的平衡.因此,优化后的P-NCS/rGO在70 mV的低过电位下实现了10 mA cm-2的电流密度,并具有令人满意的80小时耐用性.本工作阐明了石墨烯覆盖硫化物催化剂可通过调控电子结构和质子/分子穿透提高电催...  相似文献   

20.
催化剂的几何构型和电子结构对催化剂的性能有重大影响.在此我们以过渡金属铁、钴、锌分别掺杂尖晶石型氧化物MnCo2O4为理论模型,研究过渡金属原子掺杂对MnCo2O4几何构型和电子结构的调控机制及其对氧析出反应的作用机理.由于掺杂原子电负性的差异,通过掺杂会引起晶格收缩和电子结构重组.本文利用密度泛函理论计算预测:结构演变将激活晶格氧的反应性,不仅增强了尖晶石型氧化物的本征导电性,而且调控了该催化剂对中间体的吸附能力,实现了调节电压决定步骤和降低理论过电位的目的.通过理论筛选和实验发现:铁掺杂的MnCo2O4在氧析出反应中具有较低的过电位和良好的稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号