首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
为了消除隧道爆破振动信号中无规则混杂的噪声,引入了一种基于CEEMD(互补集合经验模态分解)的低通去噪方法。首先对模拟正弦信号进行EMD、EEMD、CEEMD分解,验证CEEMD分解方法的优越性,然后使用EMD和CEEMD低通方法分别对新鼓山隧道爆破信号进行去噪处理,结果表明该方法不仅克服了小波类去噪基函数选择困难和EMD模态混叠的问题,还能够使爆破波形保留其真实性和完整性,为爆破信号的精确处理奠定了基础。  相似文献   

2.
为了消除隧道爆破振动信号中无规则混杂的噪声,引入了一种基于CEEMD(互补集合经验模态分解)的低通去噪方法。首先对模拟正弦信号进行EMD、EEMD、CEEMD分解,验证CEEMD分解方法的优越性,然后使用EMD和CEEMD低通方法分别对新鼓山隧道爆破信号进行去噪处理,结果表明该方法不仅克服了小波类去噪基函数选择困难和EMD模态混叠的问题,还能够使爆破波形保留其真实性和完整性,为爆破信号的精确处理奠定了基础。  相似文献   

3.
针对滚动轴承振动信号中混入噪声的问题,设计一种自适应白噪声完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)结合改进自适应小波阈值(improved adaptive wavelet threshold,IAWT)的联合降噪法。使用CEEMDAN对信号进行模态分解得到本征模态函数(intrinsic mode functions,IMFs);将得到的IMFs与原信号进行相关性分析识别有效分量;针对小波阈值(wavelet threshold,WT)降噪算法不能自适应选取小波基和分解层数以及阈值函数存在缺陷的问题,设计了IAWT算法,利用IAWT算法过滤IMFs中的噪声;将处理后的IMFs进行信号重构。利用设计的联合降噪算法对仿真信号和试验台信号处理可知,相比于WT,使用IAWT处理后的信号信噪比提高了约0.5 dB,与原信号的相关系数提高了约0.03,均方根误差降低了约0.01;将设计的方法与CEEMDAN-WT等方法对比可知,经处理后的信号信噪比至少提高了1.37 dB,且信号特征保存完好。  相似文献   

4.
深水海洋立管因受到海洋环境的影响产生涡激振动现象,长期的涡激振动易导致立管产生疲劳破坏。为了获得真实的涡激振动特性,进行海洋立管涡激振动试验并对测试信号进行总体平均经验模态(EEMD)分解。基于分解得到的本征模态函数建立滤波算法,考虑曲线光滑度和重构信号与实测信号相似度,确立最优降噪光滑模型区间,依据存在度确定有效本征模态函数以及最优降噪光滑模型,优化目标函数。从相关度、频谱分析、能量谱分析3个角度出发进行合成信号仿真识别,并验证了算法的准确性。结果表明:构建的最优降噪光滑模型得到的有效本征模态函数,与原始信号频率成分相关系数最高,达到0.96以上,且频率对应相等;其能量占原始信号总能量的97.98%。涡激振动试验结果表明,建立的最优降噪光滑模型确定的有效本征模态函数包含顺流向、横流向振动信息,且顺流向主频是横流向频率的2倍。  相似文献   

5.
尚秋峰  黄达  巩彪 《振动与冲击》2023,(19):231-239
海底光缆的在线监测和振动信号识别是保证其正常运行的关键技术。搭建了基于布里渊光时域分析系统,模拟不同工况下的海缆振动信号。针对海缆振动信号信息丰富、信噪比低,使用单一随机配置网络(stochastic configuration network,SCN)模型对信号识别准确率不高的问题,提出了自适应增强(adaptive boosting,AdaBoost)算法优化的随机配置网络(AdaBoost-SCN)识别方法。首先用变分模态分解(variational mode decomposition,VMD)算法分解海缆振动信号,构建特征向量;然后采用AdaBoost-SCN算法对振动信号分类。结果表明,所提方法有着很高的精度,并且具有很强的鲁棒性与泛化能力,提高了布里渊光时域分析系统振动信号识别的有效性。  相似文献   

6.
针对圆弧齿轮泵由空化造成的振动问题,提出一种基于经验模态分解(ensemble empirical mode decomposition,EEMD)的圆弧齿轮泵空化流动及振动特性试验方法。以圆弧齿轮泵空化试验平台为基础,引入EEMD分解及希尔伯特边际谱分析技术,得到了不同转速及不同出口压力下的监测点的频域结果,实现了对圆弧齿轮泵振动特性的研究。试验表明:EEMD分解及希尔伯特边际谱分析技术,可以有效地识别圆弧齿轮泵出口振动特征;在额定出口压力下,随着工作转速的增大,泵出口处振动加速度信号的振动主要引起低频段能级上的增加,其中以1000~1500 Hz尤为剧烈,形成能级最大的谱峰;在额定转速下,随着出口压力的增大,振动加速度信号的边际谱峰值、中心频率位置及频率变化范围呈现出先增大后减小再增大的趋势;进一步可提取圆弧齿轮泵振动加速度信号的边际谱峰值、中心频率以及带宽作为泵空化特征参数进行分析。  相似文献   

7.
针对水电机组故障诊断问题,提出了一种基于集合经验模态分解(EEMD),曲线趋势编码(CC)和隐马尔科夫模型(HMM)的故障识别方法。该方法首先利用EEMD处理机组振动信号,得到一系列本征模态函数(IMF)然后计算各阶IMF的标准差(SDs)形成标准差曲线,并根据IMF标准差曲线的趋势进行编码构成特征向量。最后将特征向量作为学习样本输入HMM,通过训练得到各状态的HMM。当待测样本输入各状态HMM时,可通过对比各模型输出的对数似然概率值来判断样本所属状态。试验结果表明,该方法能有效提取机组故障特征,识别故障类型,与常规故障识别方法相比,具有较高的准确率。  相似文献   

8.
针对滚动轴承故障信号具有非线性、非平稳、噪声强的特点,提出了一种基于参数自寻优变分模态分解(variational modal decomposition,VMD)的信号降噪方法。以模态复合熵作为适应度函数,采用改进粒子群算法进行VMD参数自适应寻优,确定变分模态分解最优模态数K和二次惩罚因子α;基于最优K和α,对原始信号进行VMD分解,得到K个本征模态函数(intrinsic mode function,IMF)分量;利用相关系数筛选法,进行模态分量的有效模态和含噪模态识别,利用小波阈值去噪方法对含噪模态进行去噪处理;将有效模态与去噪后的模态进行重构,实现信号降噪。分别用滚动轴承故障仿真信号和试验信号进行验证,并与EMD降噪方法进行比较,结果表明该方法可有效提高故障信号的信噪比,降噪效果明显,有利于滚动轴承故障特征的提取。  相似文献   

9.
针对强背景噪声下滚动轴承故障特征难以提取的问题,提出基于自适应非线性调频分量分解(adaptive chirp mode decomposition,ACMD)与改进多点优化最小熵解卷积(improved multipoint optimal minimum entropy deconvolution adjusted,IMOMEDA)的故障诊断方法。(1)为提高信号信噪比,采用基于基尼系数指标的ACMD,进行信号重构预处理;(2)为提高参数设定的准确性,提出改进的MOMEDA方法——利用天鹰优化算法,以多点峭度最大为目标,寻优确定滤波器周期参数;(3)对信号进行包络谱分析,通过对比包络谱的主导频率成分与理论故障特征频率,判断故障类型。仿真及实测数据分析结果表明,该方法能有效提取强背景噪声下的滚动轴承故障信号的特征信息,具备一定的优越性与实用性。  相似文献   

10.
采用有限元法(FEM)进行水下壳结构振动响应分析,边界元法(BEM)进行结构振动声学分析;组合有限元法与边界元法构成耦合FEM-BEM方法进行水下薄壳结构声振强耦合分析。为了克服传统拉格朗日函数近似几何模型与物理场插值计算时的不连续与低精度问题,采用Loop细分曲面等几何法构建几何模型,并采用相同的样条函数进行物理场高阶插值计算,实现水下声振强耦合系统的CAD/CAE的集成分析。随机性分析致力于研究系统输入的不确定造成的输出不确定。蒙特卡罗模拟(MCs)因简单直接被认为是解决复杂多维不确定性问题的通用工具,然而巨大的计算成本降低了其适用性。采用本征正交分解(POD)和径向基函数(RBF)可降低计算成本,提高计算效率,实现基于MCs的快速随机性分析。考虑结构材料属性参数以及结构形状参数的不确定性对计算结果的影响,采用MCs分析随机变量下的结构声学响应的统计特征。最后通过若干算例验证该算法的正确性与有效性。  相似文献   

11.
为了得到更加纯净的混凝土声发射(acoustic emission, AE)信号来更准确地监测混凝土结构破裂过程,提出了一种完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition, CEEMDAN)与小波包自适应阈值联合方法对循环荷载作用下的混凝土声发射信号进行降噪处理,运用信噪比和快速傅里叶变化(fast Fourier transform, FFT)分析来验证所用方法的可行性。实验结果表明:结合CEEMDAN-小波包自适应阈值对混凝土声发射信号进行降噪的效果较好,能有效地保留混凝土声发射信号特征信息,对混凝土声发射信号降噪提供新的思路,为后续利用声发射信号分析混凝土结构内部微裂纹扩展及演化特征奠定基础。  相似文献   

12.
针对超声水表在实际工作环境中容易受到噪声干扰从而导致计量精度下降的问题,提出了基于集合经验模态分解(EEMD)的改进小波阈值降噪算法。为了提高降噪效果,对小波阈值降噪算法进行了改进,构造了非线性阈值函数取代传统阈值函数,同时给出了一种分解尺度选择的方法。利用EEMD将流速信号分解为一系列的本征模态函数,通过改进小波阈值降噪算法对本征模态函数进行降噪处理,去除其中的噪声分量,为了验证该算法的适用性,将其与小波阈值降噪算法和时空滤波分析方法进行了比较。试验结果表明,以超声水表流速信号为降噪对象时,基于EEMD的改进小波阈值降噪算法具有较好的降噪效果。  相似文献   

13.
针对传统小波在爆破振动信号特征提取和分析方面的局限性,提出了基于CEEMD和TQWT组合的信号精细化特征提取方法。预先设定可调品质因子小波TQWT高、低品质因子参数对CEEMD分解优势分量重组信号进行分解,并引入相对权重因子θ,优化了分解过程,实现了爆破振动信号特征的精细化提取。分析结果表明:组合方法对爆破振动信号的分析不依赖于先验小波基的选择,分解过程实现了信号的二次滤波。通过连续小波多尺度三维谱和时频小波脊线对比,说明组合算法分解得到的最佳分析信号可真实反映振动信号的细节信息,时频分辨率更高。该组合方法抑制了杂波分量对信号特征的干扰,可精确地提取复杂环境下的爆破振动信号特征信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号