首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Current treatment approaches to manage neuropathic pain have a slow onset and their use is largely hampered by side-effects, thus there is a significant need for finding new medications. Tolperisone, a centrally acting muscle relaxant with a favorable side effect profile, has been reported to affect ion channels, which are targets for current first-line medications in neuropathic pain. Our aim was to explore its antinociceptive potency in rats developing neuropathic pain evoked by partial sciatic nerve ligation and the mechanisms involved. Acute oral tolperisone restores both the decreased paw pressure threshold and the elevated glutamate level in cerebrospinal fluid in neuropathic rats. These effects were comparable to those of pregabalin, a first-line medication in neuropathy. Tolperisone also inhibits release of glutamate from rat brain synaptosomes primarily by blockade of voltage-dependent sodium channels, although inhibition of calcium channels may also be involved at higher concentrations. However, pregabalin fails to affect glutamate release under our present conditions, indicating a different mechanism of action. These results lay the foundation of the avenue for repurposing tolperisone as an analgesic drug to relieve neuropathic pain.  相似文献   

2.
Neuropathic pain reduces GABA and glycine receptor (GlyR)-mediated activity in spinal and supraspinal regions associated with pain processing. Interleukin-1β (IL-1β) alters Central Amygdala (CeA) excitability by reducing glycinergic inhibition in a mechanism that involves the auxiliary β-subunit of GlyR (βGlyR), which is highly expressed in this region. However, GlyR activity and its modulation by IL-1β in supraspinal brain regions under neuropathic pain have not been studied. We performed chronic constriction injury (CCI) of the sciatic nerve in male Sprague Dawley rats, a procedure that induces hind paw plantar hyperalgesia and neuropathic pain. Ten days later, the rats were euthanized, and their brains were sliced. Glycinergic spontaneous inhibitory currents (sIPSCs) were recorded in the CeA slices. The sIPSCs from CeA neurons of CCI animals show a bimodal amplitude distribution, different from the normal distribution in Sham animals, with small and large amplitudes of similar decay constants. The perfusion of IL-1β (10 ng/mL) in these slices reduced the amplitudes within the first five minutes, with a pronounced effect on the largest amplitudes. Our data support a possible role for CeA GlyRs in pain processing and in the neuroimmune modulation of pain perception.  相似文献   

3.
Spinal microglia are crucial to neuronal hyper-excitability and pain hypersensitivity. The local anesthetic bupivacaine is commonly used for both peripheral and spinal anesthesia. The pain-relief effects resulting from the peripheral and systemic administration of bupivacaine have been previously reported. In this study, the preventive effects of intrathecal bupivacaine administration against neuropathic pain were revealed in a rat model of sciatic nerve chronic constriction injury (CCI). Using a CCI rat model, pain hypersensitivity, characterized by mechanical allodynia and thermal hyperalgesia, correlated well with microglia M1 polarization, activation and pro-inflammatory cytokine expression in both spinal cord dorsal horns and sciatic nerves. Bupivacaine attenuated pain behaviors and inflammatory alternations. We further identified that the Interferon Regulatory Factor 5 (IRF5)/P2X Purinoceptor 4 (P2X4R) and High Mobility Group Box 1 (HMGB1)/Toll-Like Receptor 4 (TLR4)/NF-κB inflammatory axes may each play pivotal roles in the acquisition of microglia M1 polarization and pro-inflammatory cytokine expression under CCI insult. The relief of pain paralleled with the suppression of microglia M1 polarization, elevation of microglia M2 polarization, and inhibition of IRF5/P2X4R and HMGB1/TLR4/NF-κB in both the spinal cord dorsal horns and sciatic nerve. Our findings provide molecular and biochemical evidence for the anti-neuropathic effect of preventive bupivacaine.  相似文献   

4.
Diosgenin is a botanical steroidal saponin with immunomodulatory, anti-inflammatory, anti-oxidative, anti-thrombotic, anti-apoptotic, anti-depressant, and anti-nociceptive effects. However, the effects of diosgenin on anti-nociception are unclear. Transient receptor potential vanilloid 1 (TRPV1) plays an important role in nociception. Therefore, we investigated whether TRPV1 antagonism mediates the anti-nociceptive effects of diosgenin. In vivo mouse experiments were performed to examine nociception-related behavior, while in vitro experiments were performed to examine calcium currents in dorsal root ganglion (DRG) and Chinese hamster ovary (CHO) cells. The duration of capsaicin-induced licking (pain behavior) was significantly reduced following oral and intraplantar administration of diosgenin, approaching levels observed in mice treated with the TRPV1 antagonist N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropyrazine-1(2H)-carbox-amide. Additionally, oral administration of diosgenin blocked capsaicin-induced thermal hyperalgesia. Further, diosgenin reduced capsaicin-induced Ca2+ currents in a dose-dependent manner in both DRG and CHO cells. Oral administration of diosgenin also improved thermal and mechanical hyperalgesia in the sciatic nerve constriction injury-induced chronic pain model by reducing the expression of TRPV1 and inflammatory cytokines in DRG cells. Collectively, our results suggest that diosgenin exerts analgesic effects via antagonism of TRPV1 and suppression of inflammation in the DRG in a mouse model of neuropathic pain.  相似文献   

5.
Craniofacial neuropathic pain affects millions of people worldwide and is often difficult to treat. Two key mechanisms underlying this condition are a loss of the negative control exerted by inhibitory interneurons and an early microglial reaction. Basic features of these mechanisms, however, are still poorly understood. Using the chronic constriction injury of the infraorbital nerve (CCI-IoN) model of neuropathic pain in mice, we have examined the changes in the expression of GAD, the synthetic enzyme of GABA, and GlyT2, the membrane transporter of glycine, as well as the microgliosis that occur at early (5 days) and late (21 days) stages post-CCI in the medullary and upper spinal dorsal horn. Our results show that CCI-IoN induces a down-regulation of GAD at both postinjury survival times, uniformly across the superficial laminae. The expression of GlyT2 showed a more discrete and heterogeneous reduction due to the basal presence in lamina III of ‘patches’ of higher expression, interspersed within a less immunoreactive ‘matrix’, which showed a more substantial reduction in the expression of GlyT2. These patches coincided with foci lacking any perceptible microglial reaction, which stood out against a more diffuse area of strong microgliosis. These findings may provide clues to better understand the neural mechanisms underlying allodynia in neuropathic pain syndromes.  相似文献   

6.
Lumbar spinal stenosis (LSS) is a major cause of chronic neuropathic back and/or leg pain. Recently, we demonstrated that a significant number of macrophages infiltrated into the cauda equina after compression injury, causing neuroinflammation, and consequently mediating neuropathic pain development and/or maintenance. However, the molecular mechanisms underlying macrophage infiltration and activation have not been elucidated. Here, we demonstrated the critical role of histone H3K27 demethylase Jmjd3 in blood-nerve barrier dysfunction following macrophage infiltration and activation in LSS rats. The LSS rat model was induced by cauda equina compression using a silicone block within the epidural spaces of the L5-L6 vertebrae with neuropathic pain developing 4 weeks after compression. We found that Jmjd3 was induced in the blood vessels and infiltrated macrophages in a rat model of neuropathic pain. The blood-nerve barrier permeability in the cauda equina was increased after compression and significantly attenuated by the Jmjd3 demethylase inhibitor, GSK-J4. GSK-J4 also inhibited the expression and activation of MMP-2 and MMP-9 and significantly alleviated the loss of tight junction proteins and macrophage infiltration. Furthermore, the activation of a macrophage cell line, RAW 264.7, by LPS was significantly alleviated by GSK-J4. Finally, GSK-J4 and a potential Jmjd3 inhibitor, gallic acid, significantly inhibited mechanical allodynia in LSS rats. Thus, our findings suggest that Jmjd3 mediates neuropathic pain development and maintenance by inducing macrophage infiltration and activation after cauda equina compression and thus may serve as a potential therapeutic target for LSS-induced neuropathic pain.  相似文献   

7.
Vincristine (VCR) is a widely used chemotherapy drug that induced peripheral painful neuropathy. Yet, it still lacks an ideal therapeutic strategy. The transient receptor potential (TRP) channels, purinergic receptor (P2Y), and mitogen-activated protein kinase (MAPK) signaling play a crucial role in the pathogenesis of neuropathic pain. Withametelin (WMT), a potential Phytosteroid isolated from datura innoxa, exhibits remarkable neuroprotective properties. The present investigation was designed to explore the effect of withametelin on VCR-induced neuropathic pain and its underlying molecular mechanism. Initially, the neuroprotective potential of WMT was confirmed against hydrogen peroxide (H2O2)-induced PC12 cells. To develop potential candidates for neuropathic pain treatment, a VCR-induced neuropathic pain model was established. Vincristine (75 μg/kg) was administered intraperitoneally (i.p.) for 10 consecutive days (day 1–10) for the induction of neuropathic pain. Gabapentin (GBP) (60 mg/kg, i.p.) and withametelin (0.1 and 1 mg/kg i.p.) treatments were given after the completion of VCR injection on the 11th day up to 21 days. The results revealed that WMT significantly reduced VCR-induced pain hypersensitivity, including mechanical allodynia, cold allodynia, and thermal hyperalgesia. It reversed the VCR-induced histopathological changes in the brain, spinal cord, and sciatic nerve. It inhibited VCR-induced changes in the biochemical composition of the myelin sheath of the sciatic nerve. It markedly downregulated the expression levels of TRPV1 (transient receptor potential vanilloid 1); TRPM8 (Transient receptor potential melastatin 8); and P2Y nociceptors and MAPKs signaling, including ERK (Extracellular Signal-Regulated Kinase), JNK (c-Jun N-terminal kinase), and p-38 in the spinal cord. It suppressed apoptosis by regulating Bax (Bcl2-associated X-protein), Bcl-2 (B-cell-lymphoma-2), and Caspase-3 expression. It considerably attenuated inflammatory cytokines, oxidative stress, and genotoxicity. This study suggests that WMT treatment suppressed vincristine-induced neuropathic pain by targeting the TRPV1/TRPM8/P2Y nociceptors and MAPK signaling.  相似文献   

8.
(1) Background: The psychoactive and non-psychoactive constituents of cannabis, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), synergistically reduce allodynia in various animal models of neuropathic pain. Unfortunately, THC-containing drugs also produce substantial side-effects when administered systemically. We examined the effectiveness of targeted spinal delivery of these cannabis constituents, alone and in combination. (2) Methods: The effect of acute intrathecal drug delivery on allodynia and common cannabinoid-like side-effects was examined in a mouse chronic constriction injury (CCI) model of neuropathic pain. (3) Results: intrathecal THC and CBD produced dose-dependent reductions in mechanical and cold allodynia. In a 1:1 combination, they synergistically reduced mechanical and cold allodynia, with a two-fold increase in potency compared to their predicted additive effect. Neither THC, CBD nor combination THC:CBD produced any cannabis-like side-effects at equivalent doses. The anti-allodynic effects of THC were abolished and partly reduced by cannabinoid CB1 and CB2 receptor antagonists AM281 and AM630, respectively. The anti-allodynic effects of CBD were partly reduced by AM630. (4) Conclusions: these findings indicate that intrathecal THC and CBD, individually and in combination, could provide a safe and effective treatment for nerve injury induced neuropathic pain.  相似文献   

9.
Pharmacotherapy of neuropathic pain is still challenging. Our earlier work indicated an analgesic effect of dimethyl trisulfide (DMTS), which was mediated by somatostatin released from nociceptor nerve endings acting on SST4 receptors. Somatostatin release occurred due to TRPA1 ion channel activation. In the present study, we investigated the effect of DMTS in neuropathic pain evoked by partial ligation of the sciatic nerve in mice. Expression of the mRNA of Trpa1 in murine dorsal-root-ganglion neurons was detected by RNAscope. Involvement of TRPA1 ion channels and SST4 receptors was tested with gene-deleted animals. Macrophage activity at the site of the nerve lesion was determined by lucigenin bioluminescence. Density and activation of microglia in the spinal cord dorsal horn was verified by immunohistochemistry and image analysis. Trpa1 mRNA is expressed in peptidergic and non-peptidergic neurons in the dorsal root ganglion. DMTS ameliorated neuropathic pain in Trpa1 and Sstr4 WT mice, but not in KO ones. DMTS had no effect on macrophage activity around the damaged nerve. Microglial density in the dorsal horn was reduced by DMTS independently from TRPA1. No effect on microglial activation was detected. DMTS might offer a novel therapeutic opportunity in the complementary treatment of neuropathic pain.  相似文献   

10.
Antiseizure drugs (ASDs) are commonly used to treat a wide range of nonepileptic conditions, including pain. In this context, the analgesic effect of four pyrrolidine-2,5-dione derivatives (compounds 3, 4, 6, and 9), with previously confirmed anticonvulsant and preliminary antinociceptive activity, was assessed in established pain models. Consequently, antinociceptive activity was examined in a mouse model of tonic pain (the formalin test). In turn, antiallodynic and antihyperalgesic activity were examined in the oxaliplatin-induced model of peripheral neuropathy as well as in the streptozotocin-induced model of painful diabetic neuropathy in mice. In order to assess potential sedative properties (drug safety evaluation), the influence on locomotor activity was also investigated. As a result, three compounds, namely 3, 6, and 9, demonstrated a significant antinociceptive effect in the formalin-induced model of tonic pain. Furthermore, these substances also revealed antiallodynic properties in the model of oxaliplatin-induced peripheral neuropathy, while compound 3 attenuated tactile allodynia in the model of diabetic streptozotocin-induced peripheral neuropathy. Apart from favorable analgesic properties, the most active compound 3 did not induce any sedative effects at the active dose of 30 mg/kg after intraperitoneal (i.p.) injection.  相似文献   

11.
Prognosis of metastatic neuroblastoma is very poor. Its treatment includes induction chemotherapy, surgery, high-dose chemotherapy, radiotherapy, and maintenance with retinoic acid, associated with the anti-GD2 monoclonal antibody (ch14.18) dinutuximab. Immunotherapy determined a significant improvement in survival rate and is also utilized in relapsed and resistant neuroblastoma patients. Five courses of dinutuximab 100 mg/m2 are usually administered as a 10-day continuous infusion or over 5 consecutive days every 5 weeks. Dinutuximab targets the disialoganglioside GD2, which is highly expressed on neuroblastoma cells and minimally present on the surface of normal human neurons, peripheral pain fibers, and skin melanocytes. Anti GD2 antibodies bind to surface GD2 and determine the lysis of neuroblastoma cells induced by immune response via the antibody-dependent cellular cytotoxicity and the complement-dependent cytotoxicity. Dinutuximab has significant side effects, including neuropathic pain, peripheral neuropathy, hypersensitivity reactions, capillary leak syndrome, photophobia, and hypotension. The most important side effect is neuropathic pain, which is triggered by the same antibody–antigen immune response, but generates ectopic activity in axons, which results in hyperalgesia and spontaneous pain. Pain can be severe especially in the first courses of dinutuximab infusion, and requires the administration of gabapentin and continuous morphine infusion. This paper will focus on the incidence, mechanisms, characteristics, and treatment of neuropathic pain and peripheral neuropathy due to dinutuximab administration in neuroblastoma patients.  相似文献   

12.
Masticatory myofascial pain (MMP) is one of the most common causes of chronic orofacial pain in patients with temporomandibular disorders. To explore the antinociceptive effects of ultra-low frequency transcutaneous electrical nerve stimulation (ULF-TENS) on alterations of pain-related biochemicals, electrophysiology and jaw-opening movement in an animal model with MMP, a total of 40 rats were randomly and equally assigned to four groups; i.e., animals with MMP receiving either ULF-TENS or sham treatment, as well as those with sham-MMP receiving either ULF-TENS or sham treatment. MMP was induced by electrically stimulated repetitive tetanic contraction of masticatory muscle for 14 days. ULF-TENS was then performed at myofascial trigger points of masticatory muscles for seven days. Measurable outcomes included maximum jaw-opening distance, prevalence of endplate noise (EPN), and immunohistochemistry for substance P (SP) and μ-opiate receptors (MOR) in parabrachial nucleus and c-Fos in rostral ventromedial medulla. There were significant improvements in maximum jaw-opening distance and EPN prevalence after ULF-TENS in animals with MMP. ULF-TENS also significantly reduced SP overexpression, increased MOR expression in parabrachial nucleus, and increased c-Fos expression in rostral ventromedial medulla. ULF-TENS may represent a novel and applicable therapeutic approach for improvement of orofacial pain induced by MMP.  相似文献   

13.
Transient receptor potential vanilloid 1 (TRPV1) has been implicated in peripheral inflammation and is a mediator of the inflammatory response to various noxious stimuli. However, the interaction between TRPV1 and N-methyl-D-aspartate (NMDA) receptors in the regulation of inflammatory pain remains poorly understood. This study aimed to investigate the analgesic effects of intrathecal administration of capsazepine, a TRPV1 antagonist, on carrageenan-induced inflammatory pain in mice and to identify its interactions with NMDA receptors. Inflammatory pain was induced by intraplantar injection of 2% carrageenan in male ICR mice. To investigate the analgesic effects of capsazepine, pain-related behaviors were evaluated using von Frey filaments and a thermal stimulator placed on the hind paw. TRPV1 expression and NMDA receptor phosphorylation in the spinal cord and glutamate concentration in the spinal cord and serum were measured. Intrathecal treatment with capsazepine significantly attenuated carrageenan-induced mechanical allodynia and thermal hyperalgesia. Moreover, carrageenan-enhanced glutamate and phosphorylation of NMDA receptor subunit 2B in the spinal cord were suppressed by capsazepine administration. These results indicate that TRPV1 and NMDA receptors in the spinal cord are associated with inflammatory pain transmission, and inhibition of TRPV1 may reduce inflammatory pain via NMDA receptors.  相似文献   

14.
One of the pathological hallmarks of Alzheimer’s disease (AD) associated with its progression that contributes to β-amyloid (Aβ) generation is oxidative stress (OS). Clinical data suggest that melatonin is a potent antioxidant that might be effective in the adjunctive therapy of this neurodegenerative disease. The present study aimed to explore the role of melatonin on behavioral changes and markers of OS in three rat models, namely, pinealectomy (pin) model of melatonin deficit, intracerebroventricular (icv)Aβ1-42 model of AD, and combination of both pin and Aβ1-42 model (pin+icvAβ1-42). The chronic injection with vehicle/melatonin (50 mg/kg, i.p. for 40 days) started on the same day of sham/pin and icv vehicle/Aβ1-42 infusion procedures. Anxiety in the open field and the elevated plus-maze test and cognitive responses in the object recognition test were tested between the 30th–35th day after the surgical procedures. Markers of OS in the frontal cortex (FC) and hippocampus were detected by the ELISA method. Melatonin treatment corrected the exacerbated anxiety response only in the pin+icvAβ1-42 model while it alleviated the cognitive impairment in the three models. Pinealectomy disturbed the antioxidant system via enhanced SOD activity and decreased GSH levels both in the FC and hippocampus. The Aβ1-42 model decreased the SOD activity in the FC and elevated the MDA level in the two brain structures. The pin+icvAβ1-42 model impaired the antioxidant system and elevated lipid peroxidation. Melatonin supplementation restored only the elevated MDA level of icvAβ1-42 and pin+icvAβ1-42 model in the hippocampus. In conclusion, our study reveals that the pin+icvAβ1-42 rat model triggers more pronounced anxiety and alterations in markers of OS that may be associated with melatonin deficit concomitant to icvAβ1-42-induced AD pathology.  相似文献   

15.
Systemic sclerosis (SSc) is an autoimmune connective tissue disorder associated with multiple organ involvement. The aim of the study was to present two SSc patients who were diagnosed with ischemic retinopathy in both eyes. As a background to our case study, we decided to investigate the imbalance of angiogenesis factors in 25 SSc patients in relation to 25 healthy controls. Assays of matrix metalloproteinases-2 and -9 (MMP-2, MMP-9), tissue inhibitor of metalloproteinases-1 (TIMP-1) and -2 (TIMP-2), vascular endothelial growth factor (VEGF), and soluble VEGF receptor-2 (sVEGFR-2) in blood serum and tears were performed. A significantly increased levels of MMP-9 in serum and tears, (p = 0.0375 and p < 0.001, respectively) as well as VEGF/sVEGFR-2 ratio in tears (p < 0.001) were found in the whole SSc patients group compared with controls, while reduced levels of these parameters in patients with ischemic sclerodermic retinopathy were noted. We also observed decreased level MMP-2 in tears and increased levels of TIMP-2 in blood serum and tears of SSc patients with retinal ischemic changes. MMP-9, MMP-2, TIMP-2, and VEGF/sVEGFR-2 may play a crucial role in ischemic retinal degeneration or retinal reorganization in SSc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号