共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
在如今信息数据大爆炸的时代,数据的增长呈现指数级增长,而且其中大部分数据是非结构化数据,这些数据中蕴藏着大量且重要的知识等待着我们用合理的办法将其挖掘出来,如何方便合理快速的进行文本分类也是一个非常重要的课题。LDA模型是一种无监督的模型,它可以发现隐性的主题,为了更有效的发现隐性主题,本文提出一种基于半监督的LDA主题模型,找到一个主题集作为隐性层的知识集,通过这种方法找到的主题与文本更相关,另外,将LDA模型与基于半监督LDA模型应用于文本的特征提取,并与其它特征提取方法比对,实验表明,半监督LDA模型性能略好。 相似文献
3.
LDA是生成武概率模型,从理论上说,具有其他模型无可比拟的建模优点;SVM分类算法在文本分类上具有独特的优异性能,本文将前者良好的文本表示性能、降维效果与后者强大的分类能力结合起来。实验表明,该方法克服了传统选择方法带来的分类性能受损问题,并且能够在降低数据维度的象件下提高分类的正确率。 相似文献
4.
文本分类是自然语言处理领域的一个重要研究方向.综合分析发现,文本分类的研究和分析,有助于对信息进行有效的分类和管理,并为自然语言处理的应用提供有力的支持.然而,已有的研究在理论和方法层面虽然已经取得了一定的成就,但是文本分类研究涉及内容、领域和技术等多个方面,各学科研究错综复杂,因此还有很多缺陷和不足,需要进一步进行系统和深入的研究.本文针对文本分类这一研究内容,探讨了文本分类和LDA主题模型的相关理论;然后,从技术、方法和应用三个方面分析了面向LDA主题模型的文本分类的研究现状,总结了目前研究中存在的一些问题和研究策略;最后,归纳出文本分类未来的一些发展趋势. 相似文献
5.
6.
面对网络上日益丰富的评论信息资源,如何在海量的客户评论中快速有效的获取并使用其中的有效信息,成为人们日益关注的问题。研究目标是互联网上的旅游评论,通过使用数据挖掘算法分析获取评论中关于商品或服务的主题词,并提取所有评论中包含主题词的句子。使用主题抽取模型(LDA模型)进行半监督的聚类处理,建立景点评论的主题模型,实现了互联网旅游评论个性化的设置和查询。 相似文献
7.
针对互联网出现的评论文本情感分析,引入潜在狄利克雷分布(Latent Dirichlet allocation,LDA)模型,提出一种分类方法。该分类方法结合情感词典,依据指定的情感单元搭配模式,提取情感信息,包括情感词和上、下文。使用主题模型发掘情感信息中的关键特征,并融入到情感向量空间中。最后利用机器学习分类算法,实现中文评论文本的情感分类。实验结果表明,提出的方法有效降低了特征向量的维度,并且在文本情感分类上有很好的效果。 相似文献
8.
文本分类是自然语言处理的基础任务,文本中的特征稀疏性和提取特征所用的神经网络影响后续的分类效果。针对文本中的特征信息不足以及传统模型上下文依赖关系方面不足的问题,提出经过TF-IDF加权的词向量和LDA主题模型相融合,利用双向门控循环神经网络层(BiGRU)充分提取文本深度信息特征的分类方法。该方法主要使用的数据集是天池比赛新闻文本分类数据集,首先用Word2vec和LDA模型分别在语料库中训练词向量,Word2vec经过TF-IDF进行加权所得的词向量再与LDA训练的经过最大主题概率扩展的词向量进行简单拼接,拼接后得到文本矩阵,将文本矩阵输入到BiGRU神经网络中,分别从前后两个反方向提取文本深层次信息的特征向量,最后使用softmax函数进行多分类,根据输出的概率判断所属的类别。与现有的常用文本分类模型相比,准确率、F1值等评价指标都有了较高的提升。 相似文献
9.
在社交网络时代,自媒体已成为群众发布、获取信息的重要渠道,网络舆情研判已经成为各级政府部门的主要任务之一。自媒体在反映个人情感和意见思潮的同时,也会汇聚群众的情感共鸣,因此对舆情文本的情感进行分析并获取其主题成为关键。通过爬虫工具对相关舆情文本进行抓取,将获取的数据使用Python的SnowNLP模块进行情感倾向划分,结合无监督的机器学习算法LDA主题模型进行文本关键词聚类,从而确定舆情规模、情感演变规律和舆情的热点主题词,为完善舆情应对机制提供科学支持。 相似文献
10.
使用预训练语言模型的微调方法在以文本分类为代表的许多自然语言处理任务中取得了良好的效果,尤其以基于Transformer框架的BERT模型为典型代表。然而,BERT直接使用[CLS]对应的向量作为文本表征,没有从全局和局部考虑文本的特征,从而限制了模型的分类性能。因此,本文提出一种引入池化操作的文本分类模型,使用平均池化、最大池化以及K-MaxPooling等池化方法从BERT输出矩阵中提取文本的表征向量。实验结果表明,与原始的BERT模型相比,本文提出的引入池化操作的文本分类模型具有更好的性能,在实验的所有文本分类任务中,其准确率和F1-Score值均优于BERT模型。 相似文献
11.
为解决社交媒体用户发布评论文本过长,导致情感倾向不明确,情感特征分布离散,传统情感分类模型缺乏上下文语义分析,提取情感特征不准确,分类精准率较低的难题,提出一种主题模型与词向量组合特征(LDA-Word2Vec)的情感分类模型。通过LDA主题模型对长评论文本进行特征提取,构建所有主题下的特征词库;借助特征词库构建长评论的LDA特征表达;利用CBOW训练得到特征表达后文本的词向量表示,使用TF-IDF对词向量进行加权并融合语义特征,再构建机器学习模型对长评论文本进行情感分类的方法,研究了机器学习情感分类模型。实验结果表明:相较于传统的文本特征表示方法,本文提出的LDA-Word2Vec组合特征的方法,在情感分类的准确率与召回率的表现上都更加优秀。可见本文的模型能够进一步挖掘文本的情感特征,具有一定学术意义和现实意义。 相似文献
12.
BERT是近年来提出的一种大型的预训练语言模型,在文本分类任务中表现优异,但原始BERT模型需要大量标注数据来进行微调训练,且参数规模大、时间复杂度高。在许多真实场景中,大量的标注数据是不易获取的,而且模型参数规模过大不利于在真实场景的实际应用。为了解决这一问题,提出了一种基于半监督生成对抗网络的BERT改进模型GT-BERT。采用知识蒸馏的压缩方法将BERT模型进行压缩;引入半监督生成对抗网络的框架对BERT模型进行微调并选择最优生成器与判别器配置。在半监督生成对抗网络的框架下增加无标签数据集对模型进行微调,弥补了标注数据较少的缺点。在多个数据集上的实验结果表明,改进模型GT-BERT在文本分类任务中性能优异,可以有效利用原始模型不能使用的无标签数据,大大降低了模型对标注数据的需求,并且具有较低的模型参数规模与时间复杂度。 相似文献
13.
14.
近年来,随着旅游类互联网产品的兴起,网络上产生了大量针对目的景点的主观评论,使用深度学习算法对相关评论进行意见挖掘,帮助游客快速了解景区特点并为旅游监管提供依据,已然成为一个新的趋势.如何将细粒度意见挖掘方法,如方面级情感分析,应用到旅游评论中,成为一个迫切需要解决的问题.针对上述问题,结合方面级情感分析中意见词抽取和... 相似文献
15.
基于LDA模型的博客垃圾评论发现 总被引:1,自引:0,他引:1
Blog(博客)作为一种新兴的网络媒体,在很大程度上增强了互联网的开放性,Blog已经成为互联网上的主要信息源之一,这也使得Blog空间中的垃圾评论成倍增长,因此如何识别垃圾评论成为面临的重要问题。该文首先借鉴处理垃圾邮件的方法,针对Blog本身的特点,使用规则初步过滤垃圾评论,然后对剩余评论,利用Latent Dirichlet Allocation(LDA) 这种能够提取文本隐含主题的产生式模型,对博客中的博文进行主题提取,并结合主题信息进行判断,从而识别Blog空间的垃圾评论。通过实验验证,该方法可以发现大多数垃圾评论,实验取得了较好的结果,使Blog信息更加准确、有效的为用户使用。 相似文献
16.
社交网络发展迅速,即时消息系统已成为人们日常生活中必不可少的沟通交流工具。在线群聊能使人们迅速交流生活、技术及工作等信息,但是由于群聊信息更新较快,大量的信息导致跟进群聊话题是困难的。传统的主题挖掘模型不能很好地适用于群聊文本的挖掘。通过对群聊文本的特征进行分析,提出一种基于GRU和LDA的群聊会话主题挖掘(GLB-GCTM, GRU and LDA Based Group Chat Topic Mining)模型,解决了传统主题模型不能解决的词语顺序问题。首先,假定每个文档有一个基于高斯分布的主题向量,然后根据GRU原理产生每个词的隐含状态,根据当前词的隐含状态的伯努利分布确定当前词是否为停用词,以决定所使用的语言模型。该方法使用笔者加入的10个QQ群最近3个月的群聊数据集进行试验验证,结合对比实验评估标准,该模型能够有效识别出群聊文本中的主题。 相似文献
17.
18.
面向产品评论分析的短文本情感主题模型 总被引:2,自引:0,他引:2
情感主题联合生成模型已经成功应用于网络评论分析.然而,随着智能终端设备的广泛应用,由于屏幕及输入限制,用户书写的评论越来越短,我们不得不面对短评论中的文本稀疏问题.本文提出了一个针对短文本的联合情感--主题模型SSTM(Short-text sentiment-topic model)来解决稀疏性问题.不同于一般主题模型中通常采用的基于文档产生过程的建模方法,我们直接对整个语料集合的产生过程建模.在产生文档集的过程中,我们每次采样一个词对,同一个词对中的词有相同的情感极性和主题.我们将SSTM模型应用于两个真实网络评论数据集.在三个实验任务中,通过定性分析验证了主题发现的有效性,并与经典方法进行定量对比,SSTM模型的文档级情感分类性能也有较大提升. 相似文献
19.
通过定义类别聚类密度、类别复杂度以及类别清晰度三个指标,从语料库信息度量的角度研究多种代表性的中文分词方法在隐含概率主题模型LDA下对文本分类性能的影响,定量、定性地分析不同分词方法在网页和学术文献等不同类型文本的语料上进行分类的适用性及影响分类性能的原因。结果表明:三项指标可以有效指明分词方法对语料在分类时产生的影响,Ik Analyzer分词法和ICTCLAS分词法分别受类别复杂度和类别聚类密度的影响较大,二元分词法受三个指标的作用相当,使其对于不同语料具有较好的适应性。对于学术文献类型的语料,使用二元分词法时的分类效果较好,F1值均在80%以上;而网页类型的语料对于各种分词法的适应性更强。本文尝试通过对语料进行信息度量而非单纯的实验来选择提高该语料分类性能的最佳分词方法,以期为网页和学术文献等不同类型的文本在基于LDA模型的分类系统中选择合适的中文分词方法提供参考。 相似文献
20.
主题模型能够从海量文本数据中挖掘语义丰富的主题词,在文本分析的相关任务中发挥着重要作用。传统LDA主题模型在使用词袋模型表示文本时,无法建模词语之间的语义和序列关系,并且忽略了停用词与低频词。嵌入式主题模型(ETM)虽然使用Word2Vec模型来表示文本词向量解决上述问题,但在处理不同语境下的多义词时,通常将其表示为同一向量,无法体现词语的上下文语义差异。针对上述问题,设计了一种基于BERT的嵌入式主题模型BERT-ETM进行主题挖掘,在国内外通用数据集和《软件工程》领域文本语料上验证了所提方法的有效性。实验结果表明,该方法能克服传统主题模型存在的不足,主题一致性、多样性明显提升,在建模一词多义问题时表现优异,尤其是结合中文分词的WoBERT-ETM,能够挖掘出高质量、细粒度的主题词,对大规模文本十分有效。 相似文献