首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了分析复合纤维配比对熔模精铸中硅溶胶型壳的强度和透气性的影响,采用尼龙和陶瓷复合纤维制备硅溶胶型壳试样,在其中加入的尼龙纤维和陶瓷纤维的体积配比为100∶0、82.7∶17.3、61.5∶38.5、34.7∶65.3和0∶100,对获得的复合纤维增强型壳试样的生胚抗弯强度、焙烧后抗弯强度和透气性的变化规律进行研究。结果表明,当尼龙纤维在复合纤维中体积分数从0%~100%变化时,型壳生胚抗弯强度逐渐增大,焙烧后抗弯强度总体变化不明显,透气率先增大后减小。当尼龙纤维的体积分数为82.7%时,透气率达到最大值5.21。根据试样断口形貌及纤维增强行为分析,型壳生胚抗弯强度主要受纤维体积含量的影响;型壳焙烧后抗弯强度和透气性受陶瓷纤维体积含量、涂挂厚度和尼龙纤维烧失后留下孔洞数量的综合影响。  相似文献   

2.
为了解决硅溶胶型壳在搬运、脱蜡过程中易开裂的难题,在撒砂材料中混杂尼龙66(PA66)纤维作为常温增强材料和成孔剂,制备不同PA66纤维质量分数的型壳。探究PA66纤维质量分数对型壳抗弯强度、透气性和气孔率的影响规律,并分析PA66纤维对型壳性能的影响机制。研究表明, PA66纤维大幅度提高了型壳的常温抗弯强度和透气性。随着PA66纤维质量分数的增加,型壳的常温抗弯强度和透气性均增大,焙烧后抗弯强度先增大后减小。当PA66纤维质量分数为0.75wt%时,综合性能达到最佳,焙烧后抗弯强度达7.94 MPa,与未混杂纤维的试样相差不大,但其常温抗弯强度达到4.80 MPa,比未混杂纤维的试样提高了32.21%,透气性和气孔率也增加至4.2和22.77%,比未混杂纤维的试样分别提高了90.91%和13.35%。  相似文献   

3.
采用溶胶-凝胶化学包覆法制备纳米陶瓷微米高温合金复合粉末,用HVOF喷涂技术制备了复合涂层,采用SEM观察和摩擦磨损实验分析了复合粉末和复合涂层的组织和性能.研究表明:复合粉末是以纳米陶瓷为外壳包覆微米级高温合金颗粒核心的核壳式结构;陶瓷壳在喷涂过程中形成液相与高温合金液相熔合,烧结成致密陶瓷相,部分陶瓷在冷却过程中析出结晶体;复合涂层与基体的结合强度为59.2 MPa,摩擦系数为0.766,磨损率比纯高温合金涂层降低了32%.  相似文献   

4.
选用4种壳类纤维-椰子壳、榛子壳、核桃壳和稻壳为填充材料,聚氯乙烯(PVC)为基体材料,制备壳类纤维/PVC复合材料,对4种壳类纤维进行了FTIR和热分析,对4种壳类纤维/PVC复合材料进行蠕变及磨损性能测试。结果表明:4种壳类材料中,稻壳纤维中纤维素含量最高,为43.6%,稻壳纤维/PVC复合材料具有较好的结合界面和力学性能,其压缩、拉伸和弯曲强度最高,分别为43.1 MPa、23.2 MPa和46.1 MPa,比强度最低的核桃壳纤维/PVC复合材料分别高出13.7%、33.3%和21.0%,在相同应力作用下,稻壳纤维/PVC复合材料蠕变应变值最小;在相同磨损条件下,稻壳纤维/PVC复合材料的比磨损率最小,其摩擦系数亦为最小。  相似文献   

5.
氧化铝纤维增强氧化铝陶瓷基复合材料具有耐高温、高强度、抗氧化等特点,在航空航天热结构材料方向具有广阔的应用前景。使用NextelTM 610纤维布作为增强体,以浆料浸渍-模压成型工艺制备复合材料粗坯,经马弗炉一次高温烧结获得氧化铝陶瓷基复合材料。通过对纤维和基体的晶体结构、力学强度等性能随热处理温度变化的影响确定适合复合材料制备的温度范围。研究不同固含量浆料对复合材料力学性能和微观结构的影响。结果表明:NextelTM 610/Al2O3陶瓷基复合材料的弯曲强度随着固含量的增大呈先增大后减小的变化趋势,当浆料固含量为60%(质量分数,下同)时,其弯曲强度最大,达到370.68 MPa。当固含量小于60%时,复合材料弯曲强度较低的原因是纤维束内的基体填充不足;当固含量增大至65%时,复合材料弯曲强度衰减原因是过多基体缺陷的产生和纤维-基体界面间结合增强,阻碍了纤维脱粘、拔出等增韧机制。  相似文献   

6.
袁明  朱海乐  颜东煌  袁晟  黄练  刘昀 《材料导报》2023,(16):135-143
为研究钢纤维-超高性能混凝土(UHPC)基体界面粘结性能的影响因素,进一步阐明不同纤维类型、埋深下双根钢纤维、UHPC基体粘结性能及界面破坏形式,本工作通过双丝拉拔试验对不同埋深的高强钢纤维在UHPC基体中的拔出行为进行研究,以了解纤维的拉拔性能和UHPC的界面粘结性能。纤维拉拔试验以纤维类型及埋深为变量,对两根钢纤维在不同纤维埋深下的评价参数进行了表征和分析,并观察了纤维拔出后的微观形貌和UHPC基体的隧洞形貌。试验结果表明:端钩型纤维的拉拔性能优于直圆型纤维;利用SEM观察到拔出的直圆型纤维表面粘附有絮状或簇状的微小UHPC基体颗粒,并有不同程度的擦伤或长而宽的刮痕,在UHPC基体隧洞中发现了微裂纹,且在纤维拉拔过程中拔出口附近的基体会发生剥落。同时,钢纤维的拉拔性能与纤维埋深有关,但埋深对端钩型纤维影响更大,拉拔荷载峰值达到402.66 MPa,材料的强度利用率为94.9%;纤维的破坏模式也与纤维类型有关,端钩型纤维比直圆型纤维更易发生断裂。本研究可为进一步改善钢纤维增强超高性能混凝土的力学性能提供参考。  相似文献   

7.
冻瑞岚  彭志航  向阳  曹峰 《材料工程》1990,(收录汇总):120-129
氧化铝纤维增强氧化铝陶瓷基复合材料具有耐高温、高强度、抗氧化等特点,在航空航天热结构材料方向具有广阔的应用前景。使用Nextel^(TM)610纤维布作为增强体,以浆料浸渍-模压成型工艺制备复合材料粗坯,经马弗炉一次高温烧结获得氧化铝陶瓷基复合材料。通过对纤维和基体的晶体结构、力学强度等性能随热处理温度变化的影响确定适合复合材料制备的温度范围。研究不同固含量浆料对复合材料力学性能和微观结构的影响。结果表明:Nextel^(TM)610/Al 2O 3陶瓷基复合材料的弯曲强度随着固含量的增大呈先增大后减小的变化趋势,当浆料固含量为60%(质量分数,下同)时,其弯曲强度最大,达到370.68 MPa。当固含量小于60%时,复合材料弯曲强度较低的原因是纤维束内的基体填充不足;当固含量增大至65%时,复合材料弯曲强度衰减原因是过多基体缺陷的产生和纤维-基体界面间结合增强,阻碍了纤维脱粘、拔出等增韧机制。  相似文献   

8.
将光固化成型和凝胶注模技术相结合成形涡轮叶片陶瓷型芯,克服了熔模铸造中陶瓷型芯制备周期长、成本高、响应慢等不足,对新型复杂结构单晶叶片的快速研制具有重要意义。研究氧化硅基陶瓷型芯的高温强度和收缩率演变规律,探究了纳米氧化锆和铝粉的添加量以及烧结时间对其影响。通过场发射扫描电镜对样件的微观形貌进行表征,采用三点抗弯法测试了样件的高温强度。结果表明:当纳米氧化锆质量分数为2.16%、铝粉质量分数为9.8%、烧结时间为3.9 h时,氧化硅基陶瓷型芯的高温强度达到14.3 MPa,满足单晶叶片定向凝固铸造需求。制备的陶瓷型芯表面无明显裂纹,结构完整,成型质量较好。  相似文献   

9.
本工作以石英玻璃粉作为基体材料, 白刚玉粉作为矿化剂, 金属Al粉作为添加剂, 制备了氧化硅基陶瓷型芯。研究了不同含量金属Al粉对氧化硅基陶瓷型芯收缩率、物理性能、显微组织和相组成的影响。研究结果表明, 在型芯烧结过程中, 金属Al粉受热氧化形成Al2O3, 伴随着体积膨胀和重量增加, 可以抑制陶瓷型芯的烧结收缩和铸造收缩。Al粉对烧结过程中的方石英析晶无明显抑制作用, 铸造过程中由于型芯骨架结构的松散程度增加, 型芯的高温抗变形能力降低。当铝粉含量为1wt%时, 陶瓷型芯综合性能良好, 三维方向的烧结收缩率分别为0.01%、0.03%、0.03%, 气孔率为28.58%, 挠度为0.57 mm, 抗弯强度为12.1 MPa。制备的陶瓷型芯能够满足高温合金定向凝固需求, 并有望能提高空心涡轮叶片的内腔尺寸精度。  相似文献   

10.
以聚硼硅氮烷(PBSZ)为前驱体,SiBNC纤维(SiBNCf)为增强纤维,采用前驱体聚合物裂解转化与热压烧结技术相结合的方法制备了SiBNCf/SiBNC陶瓷复合材料。在800~1 500℃空气气氛下非等温氧化1~3h,研究了SiBNCf/SiBNC的氧化演变机制及氧化动力学行为。采用SEM、XRD研究了SiBNCf/SiBNC陶瓷复合材料氧化实验前后的微观形貌、物相,采用阿基米德体积排水法和三点弯曲测试法分析了复合材料的密度、孔隙率及力学性能。结果表明:SiBNCf/SiBNC陶瓷复合材料具有优异的抗氧化性能和高温稳定性,生成的氧化膜能有效阻隔氧气的进入,并且有效填补了SiBNCf/SiBNC复合材料的裂纹及孔洞缺陷,具有高温自愈合行为。SiBNCf/SiBNC复合材料氧化后密度提高,这能大幅度提高其三点弯曲强度,当密度从1.67g/cm3提高到1.86g/cm3时,气孔率下降41%,弯曲强度从7.51 MPa提高到26.54 MPa。  相似文献   

11.
为了分析纤维长度对陶瓷纤维增强硅溶胶型壳抗弯强度与透气性的影响及增强行为,采用1~6mm六种不同长度陶瓷纤维制备硅溶胶型壳试样。研究结果表明,陶瓷纤维长度对硅溶胶型壳强度和透气性的影响显著,随着陶瓷纤维长度的增加,型壳的抗弯强度先增大后减少,型壳的透气率先增大后减小再增大。当陶瓷纤维长度为4mm时,型壳的常温及焙烧后抗弯强度达到最大值,分别为2.97 MPa和6.84 MPa;型壳的透气率达到最大值2.90。当陶瓷纤维长度大于4mm时,纤维在型壳中分散性变差,纤维的桥联作用得不到有效发挥,型壳孔隙率减少,导致型壳强度和透气性变小。  相似文献   

12.
为了提高熔模铸造硅溶胶型壳的性能,向涂料中添加硅酸铝纤维制备纤维增强熔模铸造型壳试样。对不同纤维加入量条件下所获得的纤维增强型壳试样的常温及焙烧后抗弯强度、高温自重变形量的变化规律进行研究,并利用SEM观察型壳试样断口形貌。结果表明:随硅酸铝纤维加入量从0.2%~1.0%(质量分数,下同)变化,其常温抗弯强度显著增大,高温自重变形量减小;纤维加入量为1.0%时,试样的常温抗弯强度较未增强的试样提高了47%,而高温自重变形减少约50%。采用0.2%~1.0%的硅酸铝纤维增强后,复合型壳焙烧后强度至少提高39%。断口SEM形貌观察分析结果表明,纤维增强硅溶胶型壳试样受力破坏失效主要由于硅溶胶凝胶膜的断裂、硅酸铝纤维拔出、断裂及脱粘等综合作用所致。  相似文献   

13.
将单宁酸共混改性的环氧树脂与单宁酸-金属Na~+络合改性超高分子量聚乙烯(UHMWPE)纤维进行复合,从而改善了UHMWPE纤维与环氧树脂的界面强度,提高了纤维增强复合材料的整体性能。改性后纤维表面的单宁酸与树脂基体中的单宁酸在界面处形成"桥联"作用。单宁酸共混改性环氧树脂是为了在环氧树脂中引入羟基以增强其力学强度。结果表明,当单宁酸在环氧树脂中的负载量为1%时,树脂基体的拉伸强度、弯曲强度达到最大值,分别为55.41 MPa, 74.24 MPa,与纯环氧树脂相比分别提高了67.5%和63.5%。同时界面剪切强度达到2.22 MPa,与原复合材料相比提高了64.8%。纵向纤维束使环氧树脂复合材料的拉伸强度增加到89.52 MPa,弯曲强度达到118.82 MPa,与纯复合材料相比,分别提高了120.2%,47.3%。通过扫描电镜图分析可以得出,纤维增强复合材料的破坏方式为黏接剂破坏。  相似文献   

14.
为实现建筑陶瓷力学性能的大幅度提升,采用机械活化法(MA)对建筑陶瓷粉体进行预处理,探究了MA处理时间对建筑陶瓷粉体、生坯、烧结体性能的影响规律;并基于陶瓷试样物相组成与微观结构分析,阐释了MA的强韧化机制。结果表明:MA可降低陶瓷粉体粒径、增强烧结活性,并提升陶瓷生坯的致密化进程,而且有利于提升建筑陶瓷的致密度,降低陶瓷中气孔缺陷数量与尺寸,继而实现了陶瓷的致密化强化;此外,MA还可以细化与均匀化刚玉和石英相颗粒,促进石英在液相中的熔解,提升玻璃相基体中SiO2含量,增大莫来石相的结晶度与长径比及陶瓷断面的粗糙度与裂纹扩展路径,继而可提升弥散增强、基体强化、莫来石强化效果与裂纹偏转增韧效果,有利于实现建筑陶瓷的强韧化。随着MA处理时间的延长,建筑陶瓷的力学强度、韧性与柔性均逐渐增强,MA处理40 min制得的陶瓷试样的弯曲强度((88.2±6.3) MPa)、断裂功((390.5±44.2) J/m2)与极限应变((10.24±0.48)×10-4)分别较未经MA处理制得的试样提升了52.8%、112.6%、39.1%...  相似文献   

15.
芳纶Ⅲ纤维拉伸性能的实验研究   总被引:4,自引:1,他引:3  
测试了芳纶Ⅲ纤维的拉伸性能等,并与F-12和Kevlar-49纤维进行了对比.对由芳纶Ⅲ纤维与环氧树脂基体复合成型的单向纤维增强环形试样,测试了其拉伸强度、弹性模量和层间剪切强度,结果表明:芳纶Ⅲ纤维单向纤维复合材料的拉伸强度和弹性模量与F-12纤维相当,分别比Kevlar-49纤维要高出约25.7%和24.7%;但早期的芳纶Ⅲ纤维与环氧树脂基体的界面结合性较差,层间剪切强度仅为32.0~35.2MPa.  相似文献   

16.
为提高芳纶纤维与复合材料基体间的界面强度,首先,使用LiCl乙醇溶液处理芳纶纤维一定时间;然后,对LiCl处理芳纶纤维表面的化学组成、微观形貌、单丝拉伸强度及芳纶纤维/环氧树脂复合材料的界面性能等进行了测试分析。结果表明:使用LiCl乙醇溶液处理芳纶纤维后,芳纶纤维表面的含氮官能团含量增加;处理后,芳纶纤维表面有刻蚀出的沟槽,表面粗糙度增大,进而改善了芳纶纤维与环氧树脂基体的界面粘接性能,使芳纶纤维/环氧树脂复合材料的层间剪切强度由处理前的21.75 MPa提升到37.98 MPa;最佳处理时间为3~4 h,而处理时间过长会导致芳纶纤维的单丝拉伸强度及复合材料的层间剪切强度下降。所得结论证实使用LiCl处理芳纶纤维是一种有效的表面改性方法。   相似文献   

17.
采用等温等压化学气相浸渗法(ICVI),对原始的SiC纤维束和沉积有PyC层的SiC纤维束浸渗SiC基体,制备了纤维束复合材料SiC/SiC(Mini SiC/SiC)。分析了SiC纤维束和Mini SiC/SiC复合材料的拉伸性能,同时利用两参数Weibull分布研究了强度分布。结果表明,PyC层具有修复纤维表面缺陷的作用,SiC纤维束沉积PyC层后,纤维表面光滑而致密,表面缺陷减少,其拉伸强度、延伸率和Weibull模数分别比原始SiC纤维束提高了25%、12%和288%;且由其增强复合材料的拉伸强度、延伸率和Weibull模数分别比由原始SiC纤维束增强复合材料提高了103%、83%和340%。PyC界面层对SiC纤维表面缺陷的修复作用和对SiC纤维的保护作用以及降低复合材料裂纹敏感性的作用提高了Mini SiC/SiC复合材料的拉伸性能和Weibull模数。  相似文献   

18.
光固化3D打印是制造高度复杂结构陶瓷的一种有效方法。打印的样件需要经历脱脂和烧结等热处理才能成为可用的陶瓷件, 脱脂工艺对打印件性能影响巨大。本工作通过研究脱脂工艺对DLP光固化3D打印制备的堇青石陶瓷性能的影响规律, 建立缺陷抑制策略。比较并分析了脱脂气氛和升温速率对陶瓷样件的表面裂纹和元素分布状态的影响, 还对比进一步烧结后样件显微组织、尺寸收缩率、相对密度和弯曲强度等性能。研究发现脱脂气氛对样件各性能影响最大, 使用氩气脱脂可显著降低表面裂纹, 提高相对密度与弯曲强度; 并确定最佳升温速率为1 ℃/min。最终获得表面完整无裂纹且相对密度为(94.6±0.3)%, 弯曲强度为(94.3±3.2) MPa的堇青石陶瓷样件。本研究为光固化3D打印堇青石陶瓷的无缺陷制造与应用提供了科学依据与技术参考。  相似文献   

19.
连续Si3 N4纤维以其优异的热稳定性、高温力学性能和介电性能,被认为是耐高温陶瓷基透波复合材料的候选材料之一.采用连续Si3 N4纤维为增强体,以BCl3+NH3+H2+Ar反应体系,利用化学气相沉积工艺在Si3 N4纤维表面制备了BN界面层,并以聚硅硼氮烷为陶瓷先驱体,通过先驱体浸渍裂解工艺制备了Si3 N4/SiBN复合材料.研究了CVD BN界面层的合成及其对Si3 N4/SiBN复合材料弯曲性能的影响.结果表明:在Si3 N4纤维表面获得了均匀致密的BN界面层,该界面层有效改善了复合材料中纤维/基体的界面结合力,复合材料显示出典型的韧性断裂特征.当界面层的厚度为200 nm时,Si3 N4/SiBN的弯曲强度和断裂韧性分别为182.3 MPa和17.3 MPa·m1/2,比无涂层的复合材料分别提高了59.6%和94.4%.  相似文献   

20.
异形截面纤维大的比表面积有利于提高纤维与基体树脂间的界面结合,改善复合材料的强度和韧性.文中采用环氧氯丙烷对熔纺三叶形聚乙烯醇(PVA)纤维进行表面改性,通过模压成型首次制备了改性三叶形PVA纤维/环氧树脂复合材料.对比研究了改性前后三叶形PVA纤维表面结构和性能及对复合材料力学性能的影响.结果表明,改性后三叶形PVA纤维表面出现鳞状沟槽,粗糙度增加;纤维表面接枝了环氧官能团,与环氧预浸料的接触角减小,浸润性增加;表面接枝的环氧官能团参与了基体树脂的固化反应,单纤拔出力提高至3.61 N;改性三叶形PVA纤维/环氧复合材料的拉伸强度、弯曲强度和冲击强度分别为62.3 MPa,53.8 MPa和79.0 kJ/m2,比未改性三叶形PVA纤维/环氧复合材料分别提高了22.9%,134.9%和43.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号