共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
针对传统蚁群算法(ACO)收敛速度慢、全局搜索能力不佳、易陷入局部最优、路径不光滑及不安全等缺点,本文提出一种将改进的蚁群算法和非线性支持向量机(SVM)结合的移动机器人路径规划算法。对传统蚁群算法引入两个角度信息,增加算法的朝向性,克服局部最优问题;信息素挥发因子随迭代次数自适应调整,加快全局搜索能力和收敛速度。在此基础上结合高斯径向基核最小二乘支持向量机,采用提出的改进蚁群算法获得支持向量机的惩罚系数和核函数宽度,利用径向基核函数和决策函数在改进蚁群算法的路径转向位置处训练优化,得到平滑及安全的路径。仿真结果表明,提出的算法不但可以有效提高收敛速度和精度,而且使得路径光滑且安全。 相似文献
4.
5.
支持向量机是以统计学习理论为基础发展起来的新的通用学习方法,较好解决了小样本、高维数、非线性等学习问题。从理论与实验上比较了目前常用的基于支持向量机的变压器故障诊断方法。 相似文献
6.
7.
基于混沌理论和支持向量机的人脸识别方法 总被引:2,自引:0,他引:2
针对如何选定主成分分析(PCA)特征维数和如何选定支持向量机(SVM)的参数来进一步提高人脸识别系统性能的问题,提出了一种基于混沌理论和支持向量机的人脸识别方法.首先,在统一的目标函数下,在采用PCA方法对人脸图像进行降维和将得到的特征送入SVM中进行训练期间,使用具有可操作性的改进混沌优化算法同时对PCA图像特征维数和分类器参数进行优化选择,然后用得到的优化人脸特征和最佳参数的分类器对未知图像进行识别.基于该方法,对ORL和Yale人脸库进行实验,其识别率都高达99%以上,仿真结果表明,该方法极大地提高了人脸识别能力. 相似文献
8.
为解决传统离心泵故障诊断仅使用单一振动信号而无法综合利用多物理场相关性信息等问题,该研究提出一种基于多物理场信号相关分析与支持向量机(SVM)相结合的故障诊断方法。首先对采集到的离心泵在不同状态下的多物理场信号进行归一化操作;其次计算任意两个归一化后的多物理场信号的相关度并组成相关度矩阵;最后,以相关度矩阵作为特征使用SVM进行诊断。为验证该方法的有效性,使用离心泵故障数据对所提方法进行了验证。结果表明,相比仅使用单一信号的故障诊断方法,该方法能充分提取离心泵多物理场相关度信息,特征提取更充分,有效提高离心泵故障诊断正确率。 相似文献
9.
10.
11.
12.
13.
针对传统支持向量机(SVM)算法在滚动轴承故障诊断领域中,对失衡数据集效果不佳、对噪声敏感以及对本身参数依赖较大等缺点,提出一种基于样本特性的过采样算法(OABSC)。该算法利用改进凝聚层次聚类将故障样本分成多个簇;在每个簇中综合考虑样本距离、近邻域密度对"疑似噪声点"进行识别、剔除,并将剩余样本按信息量进行排序;紧接着,在每个簇中采用K^*-信息量近邻域(K^*INN)过采样算法合成新样本,以使得数据集平衡;模拟3种不同失衡比下的轴承故障情况,并采用粒子群算法优化了SVM分类器的参数。经试验证明:相比已有算法,OABSC算法能更好地适用于数据呈多簇分布且失衡的轴承故障诊断领域,拥有更高的G-mean值与AUC值以及更强的算法鲁棒性。 相似文献
15.
以更准确的估算地震预警(earthquake early warning,EEW)震级为目标,利用P波触发后3 s内的日本K-net强震数据,选取幅值参数、周期参数、能量参数、衍生参数这4大类共12个P波特征参数作为输入,构建基于支持向量机震级预测模型(support vector machine for earthquake magnitude estimation,SVM-M)。结果表明,比较传统的震级估算“τc方法”与“P d方法”,建立的SVM-M模型震级预测误差明显减小且不受震中距变化的影响,小震高估问题得到明显改善。2016年日本熊本地震主震(M j7.3)与2008年中国汶川地震主震(M s8.0)的震例分析结果表明,3 s时间窗不能匹配震源破裂全过程而出现了一定程度的震级低估,但仍可在P波触发后短时间窗内明确是大地震事件。建立的SVM-M模型可应用于地震预警震级快速估算。 相似文献
16.
17.
18.
支持向量机(SVM)是一种对小样本决策具有良好学习性能的机器学习方法。常规SVM算法是从二类分类问题推导得出的,针对于故障诊断这种典型的多类决策问题,研究了一种网格式支持向量机多类算法,每个类别和其他2至4个类别之间采用常规SVM二值分类器进行分类,所需二值分类器总数少,可扩展性强。把转轴上不同位置的裂纹当作不同的故障,运用网格式支持向量机进行转轴裂纹位置故障诊断,结果表明该算法具有计算量小、诊断速度快、故障识别率高、容易扩展等优点,适合于较大规模的多类别故障诊断应用。 相似文献
19.
提出了基于支持向量机的模拟电路软故障诊断新方法.该方法提取电路的频域响应为故障特征,利用支持向量机对故障进行识别分类.支持向量机具有结构简单、泛化能力强的特点,对小样本分类具有良好的识别效果.以Sallen-Key滤波电路为诊断例,实验结果表明该方法故障诊断准确率大于99%. 相似文献
20.
针对滚动轴承故障诊断中特征提取困难和模式识别准确率低等问题,提出了一种基于多尺度均值排列熵(MMPE)和灰狼优化支持向量机(GWO-SVM)结合的故障诊断方法。利用MMPE全面表征滚动轴承故障特征信息,选取适当维数特征构成样本数据集,采用GWO-SVM分类器进行故障模式识别。对所提基于MMPE和GWO-SVM故障诊断方法进行理论分析和研究,并利用滚动轴承试验数据进行相应对比试验分析,结果表明:MMPE能够有效提取滚动轴承故障特征信息;GWO-SVM识别准确率和识别速度优于滚动轴承故障诊断其它常用参数优化支持向量机;所提方法能够有效识别滚动轴承故障位置和故障程度,在滚动轴承数据集上取得了98.0%的故障识别准确率,高于基于MPE和GWO-SVM方法的97.0%准确率,并且在噪声背景下取得了93.5%的识别准确率,优于后者83.0%准确率,证明了所提MMPE具有更好的噪声鲁棒性。 相似文献