首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
针对某大尺寸、 薄壁、 双侧曲面、 高翻边、 翻边弯曲半径较小的TC4钛合金异形零件的热成形工艺,研究了模具设计以及不同工艺参数组合对成形缺陷产生的影响,并对成形后的试验件进行了微观组织分析、 显微硬度和拉伸性能测试.结果表明,采用成形温度730℃、 压边力49 kN、 成形速率3 mm·min-1的组合工艺参数,可获...  相似文献   

2.
采用弹性填料作为传力介质对薄壁小弯曲弯头进行挤胀成形,研究了薄壁小弯曲弯头弹性介质挤胀成形机理和主要影响因素,分析了弹性介质下的薄壁小弯曲弯头挤胀成形过程和壁厚分布规律.结果表明:弹性介质在冲头轴向推力与球形芯轴反推力的双向挤压下发生弹性变形并形成连续的弹性体以产生胀力,弯曲时将管坯紧贴于凹模,同时推动管坯沿凹模型腔变形流动;此外,球形芯轴的进给量是弹性介质挤胀成形工艺的关键,在进给量不足时使成形件出现截面畸变及出口端塌陷变形等缺陷;以管径Φ32 mm×1 mm的LF2M铝合金弯头成形为例,球形芯轴的进给量控制在75°时,成形件整体壁厚分布相对均匀,外侧最大壁厚减薄率为16%.  相似文献   

3.
在MSC/Superform有限元模拟软件和弹塑性有限元理论的基础上,建立了钛合金环形管成形过程的计算机模拟系统.选取阿基米德螺旋线为牛角芯模中心线设计模具,采用中频感应加热方法,对阿基米德常数、扩径比、弯曲角度等模具参数进行优化模拟.分析可得:(1)阿基米德螺线系数的合理选取能够保证获得较好的壁厚均匀性,模拟得到本工艺较佳系数为1.0;(2)扩径比太大,容易出现起皱、减薄等缺陷;扩径比偏小,腹部增厚、壁厚均匀性降低,本工艺合适的扩径比为1.33;(3)弯曲角度太小,弯管成形过程变形剧烈,成形后弯管的力学性能等不能较好满足要求;弯曲角度太大,变形过程平稳,但随着推制阻力的增大导致推制困难,本工艺较佳弯曲角度为40o.通过正交试验方法验证得到:在上述参数条件下可以获得壁厚均匀、耐高压、等强度的钛合金环形管.  相似文献   

4.
针对复杂盒形零件一次拉深成形不足的问题,提出了一种拉深气胀复合精确热成形工艺,其成形零件的外形及壁厚均满足设计要求。以TC2钛合金复杂盒形件为研究对象,研究了TC2钛合金在550~800 ℃和0.001~0.1 s-1条件下的高温成形性能。设计了一套可一次性完成拉深、气胀的模具。基于有限元仿真模拟软件PAM-STAMP对零件成形过程进行模拟,获得了优化工艺参数并进行实验验证。结果表明:PAM-STAMP仿真软件可以预测零件拉深和气胀缺陷,优化了工艺参数和模具形状并进行实验验证。实验在800 ℃、气体压力2.5 MPa条件下获得了壁厚、侧边高度均符合设计要求的零件,验证了该拉深气胀复合工艺的可行性。  相似文献   

5.
薄壁管材的小弯曲半径数控弯曲成形十分困难,外侧壁厚减薄是弯管成形中的加工缺陷之一,对于钛合金薄壁管尤为严重。采用模拟与实验相结合的方法,对规格为58 mm×1.5 mm的CT20钛合金管材数控弯曲成形过程中弯曲段的壁厚减薄进行了研究,得到相对弯曲半径对壁厚减薄的影响规律。结果表明,CT20钛合金管材冷弯成形时的极限相对弯曲半径(R/D)为2。  相似文献   

6.
针对大型双曲率非等厚TC4钛合金壁板整体SPF/DB成形工艺进行了研究.由于零件尺寸超过1800 mm,型面复杂(双曲率,弦高为330 mm),壁厚分布不均匀,成形后出现了严重开裂(多于6处)、明显缩沟(深度大于1.1 mm)和不贴模等缺陷,且在成形后难于通过化铣精确控制壁厚分布,提出了预变形、化铣、扩散连接和超塑成形...  相似文献   

7.
铝合金大口径薄壁管数控弯曲实验研究   总被引:3,自引:1,他引:3  
铝合金大口径薄壁管小弯曲半径数控弯曲成形过程中更容易发生起皱、截面畸变和壁厚减薄等缺陷。文章根据成形缺陷产生的原因对弯管模具结构和设备装置进行了改进,包括模具内锁设计、紧凑型柔性芯棒、模具并紧杆和长内衬顶推。在此基础上,采用实验研究方法,对Φ70mm×1.5mm×105mm(外径×壁厚×弯曲半径)的大口径薄壁铝合金管数控弯曲成形质量及应变规律进行了分析,并研究了顶推装置在大口径薄壁铝合金管数控弯曲成形中的效用。  相似文献   

8.
6061-T4薄壁铝合金管数控弯曲回弹规律(英文)   总被引:2,自引:0,他引:2  
以规格为50.8mm×0.889mm(管材外径×管材壁厚)的高性能薄壁6061-T4铝合金管为对象,采用单因素实验分析和基于全过程三维有限元模拟的正交方法,获得多个弯曲成形参数对6061-T4薄壁铝合金管数控弯管回弹的影响。结果表明:1)弯管回弹角随弯曲角度的增大而总体呈线性增大;2)影响弯管回弹的显著性因素从高到低排列为:芯棒管材间隙,弯曲半径,压模管材摩擦,防皱块管材间隙,压模管材间隙,助推速度,芯模管材摩擦和芯球个数;3)显著性成形参数对回弹的影响规律与不锈钢和钛合金相似:回弹角随弯曲速度、芯棒管材间隙、相对弯曲半径、防皱模管材间隙、压力模摩擦系数、压力模相对助推速度的增大而增大,随芯棒伸出量、芯球个数和芯棒摩擦系数的增大而减小。  相似文献   

9.
为研究多曲率截面TC4钛合金超塑性胀形过程中成形气压加载速度对零件成形效果的影响,利用MARC有限元软件对TC4钛合金板材在应变速率为2×10-3 s-1条件下进行了超塑性胀形模拟,获得了气压-时间加载曲线。基于该曲线设计了3种不同成形气压加载速度曲线,并分别进行了超塑性胀形试验。试验结果表明,在3种不同成形气压加载速度条件下,气压加载速度越慢,零件成形效果越好。零件各个位置壁厚变化均匀且实际壁厚减薄趋势与模拟得到的壁厚减薄趋势大致相符,零件实际最大壁厚减薄率约为25%,满足零件使用要求。成形后的零件各变形区域的晶粒形状变化不大且均为等轴晶粒,晶粒尺寸随着板材形变量的增大而减小。  相似文献   

10.
基于最大m值法的超塑性胀形最佳压力加载方式   总被引:1,自引:0,他引:1  
《塑性工程学报》2016,(5):69-76
采用最大m值法拉伸试验获得了随应变变化的最佳应变速率关系曲线,以控制钣金超塑胀形气压加载,使得板料变形集中部位的实际等效应变速率等于变化的最佳应变速率,而非等于恒应变速率拉伸获得的最佳应变速率定值,从而获得比目前基于恒应变速率超塑胀性更优良的成形性能。以2A12铝合金为研究对象,采用最大m值法拉伸实验获得其最佳应变速率关系曲线,以控制超塑性胀形,并与恒应变速率胀形进行比较;为改善壁厚均匀性,设计了正反胀形模具与工艺,并结合有限元软件MSC.Marc 2010,对整流罩进行单向和正反向胀形模拟,并进行实验验证。结果表明,对于单向胀形,基于最大m值法的简化应变速率胀形,其成形时间仅为760s,较恒应变速率胀形3 360s大幅缩短,而二者的减薄率分别为70.4%和70.9%,在降低减薄率的同时,极大的提高了胀形效率;基于最大m值法的简化应变速率正反胀形,零件最小壁厚为1.157mm,较基于最大m值法的简化应变速率单向胀形零件的最小壁厚0.887mm有一定程度增加,而不均匀性则由69.97%降为28.9%,有效改善了壁厚均匀性;实验证明,采用最大m值法的胀形件的最小壁厚有所提高,均匀性得到了有效改善,且壁厚分布与模拟结果相吻合。  相似文献   

11.
《塑性工程学报》2014,(2):25-31
TC4钛合金锥形环辗轧坯料对成形环件的几何(圆度、壁厚均匀性)、温度与应变分布等具有重要影响。该文针对TC4钛合金锥形环件热辗轧过程设计了"芯辊基准型"和"驱动辊基准型"两种不等壁厚锥形环坯,对传统"等壁厚型"锥形环坯进行优化;采用基于ABAQUS软件平台的建模仿真方法,模拟并揭示了辗轧过程中轧制力、成形环件圆度、壁厚均匀性及温度与应变场对3种不同环坯的响应规律。结果表明,"芯辊基准型"和"驱动辊基准型"两种锥形环坯下,辗轧过程中的轧制力较"等壁厚型"锥形环坯下的轧制力小;"芯辊基准型"、"驱动辊基准型"和"等壁厚型"锥形环坯下,成形环件表面质量、圆度、壁厚均匀性及温度分布均匀性依次变差,但应变分布均匀性依次变好。综合考虑,"芯辊基准型"锥形环坯更适合于该文TC4钛合金锥形环辗轧过程。  相似文献   

12.
采用有限元分析软件MSC.MARC,设计了20组参数组合,对AZ31镁合金心形件在不同成形温度和应变速率下的恒应变速率超塑气胀成形进行了模拟分析;同时对相同温度下不同应变速率的胀形模型和相同应变速率下不同温度的胀形模型的壁厚分布做了进一步分析,对比得到温度和应变速率对胀形件的影响规律,并对成形过程中可能出现的缺陷位置做了预测.结果表明:在温度340℃,应变速率5×10-3s-1组合下,胀形件最小壁厚具有最大值.  相似文献   

13.
钛合金薄壁筒形件热旋成形技术研究   总被引:7,自引:3,他引:4  
采用TA15钛合金开展钛合金薄壁筒形件热旋成形技术研究,针对钛合金热旋过程中出现的典型缺陷进行形成机理和控制方法研究,成功地旋制出了质量良好的BT20钛合金大型薄壁筒形件.研究表明,钛合金薄壁筒形件热旋成形的关键是保证金属旋压时变形流动的均匀性,其直接受到热旋加热方式、旋压工艺参数和成形模具等因素的影响.BT20钛合金合适的旋压温度范围为600~700℃,当坯料较厚时温度可稍高以防止裂纹,而坯料较薄时旋压温度可适当降低以防止坯料隆起;钛合金筒形件壁厚越薄,越容易产生鼓包和褶皱等成形缺陷,尤其是当厚径比(t/D)小于1%时,应采用较小的道次减薄率以防止局部失稳;采用较小的工作角和较大的旋轮圆角半径有利于促进旋压变形的均匀性.  相似文献   

14.
缠绕式弯管工艺对管壁厚度影响的数值分析   总被引:10,自引:6,他引:10  
武世勇  石伟  刘庄 《锻压技术》2002,27(1):35-38
采用大型通用有限元分析软件ANSYS对缠绕式弯管制造工艺进行数值模拟分析,计算出弯管在弯制成形后的外壁减薄率和内壁增厚率、弯管的应力应变分布等相关工艺参数,并比较了不同的相对弯曲半径对壁厚减薄的影响。  相似文献   

15.
超塑成形/扩散连接技术是利用钛合金在低应变速率、合适的温度环境下伸长率高和变形阻力小的特点,在一次加热条件下同时完成气胀成形和扩散焊接,制造空心带夹层零件。选择典型的钛合金双层板中空构件为研究对象并制定成形工艺方案,采用有限元分析方法,模拟板件在超塑性状态下的成形过程,观测其在模腔内的气胀成形过程。其次通过分析成形构件的壁厚分布情况,调整并确定气压力-时间曲线用于指导工艺试验。最后对构件进行工艺试验和质量分析,取得不同压力模式下的扩散连接金相组织,以及与数值模拟相同取样点处的气胀成形壁厚数据,验证数值模拟结果与实际成形结果的偏差。  相似文献   

16.
为了响应轨道交通领域新时代发展需求,利用有限元分析软件MSC.Marc模拟了开闭机构舱门主体件在温度为480℃、应变速率为0.001 s-1条件下的整体超塑气胀、快速超塑气胀、均匀快速超塑气胀的3种成形工艺,预测了材料的变形流动规律及成形缺陷,厚度均方差由整体超塑气胀时的0.129 mm依次降低至快速超塑气胀时的0.088 mm和均匀快速超塑气胀时的0.072 mm,极限减薄率由32.6%依次降低至25.1%和22.3%。结果表明,集热冲压与超塑正反胀工艺优势于一体的刚柔介质协调成形的均匀快速超塑气胀工艺最佳,并将其作为实际成形工艺路径。  相似文献   

17.
利用有限元仿真软件,对异形截面副车架零件弯管、预成形和液压成形全工序进行模拟,分析了零件成形过程中壁厚变化规律。通过优化弯管参数,改进了弯管结果;通过优化预成形形状,消除了预成形过程中"咬边"风险,通过优化液压成形加载曲线,获得了零件成形所需的工艺参数。在此基础上开展工艺试验,成功研制了副车架样件。对液压成形零件壁厚进行测量,获得了零件沿轴线典型截面的壁厚变化。研究结果表明,零件成形内压力为140 MPa,补料量60 mm时,可成形出满足要求的零件,零件最大壁厚2. 33 mm,增厚率为16. 5%,最小壁厚1. 62 mm,最大减薄率为-19%。  相似文献   

18.
薄壁铝合金管小弯曲半径数控弯曲是个多因素耦合、多模具约束下的复杂过程。提出以有限元模拟为基础,基于显著性的工艺参数优化方法,即采用析因因子设计分析工艺参数对成形质量,即最大壁厚减薄率和最大截面畸变变化率影响的显著性,获得影响显著的参数,即管与防皱模间间隙的最优值,并确定其他影响不显著的参数值,包括管与模具间的间隙和摩擦、芯棒伸出量和助推速度。结果应用于规格为d50mm×1mm×75mm和d70mm×1.5mm×105mm(管外径D0×管壁厚t0×弯曲半径R)的铝合金管弯曲,获得了合格的管件。  相似文献   

19.
TC4合金复杂型面工件薄壁旋压成形工艺   总被引:1,自引:0,他引:1  
普通旋压是应用于化学容器上的TC4钛合金薄壁环形内胆最适宜的成形方法。本文制定出了钛合金薄壁环形内胆的旋压成形的合理的工艺流程——下料、剪圆(直径480mm)、正旋拉旋(加热到800℃)、退火、反旋拉旋(加热到800℃)、退火、切边。通过试验研究确定了TC4钛合金薄壁环形内胆的旋压成形的合理工艺参数,研制出了合格的TC4钛合金薄壁环形内胆旋压工件。  相似文献   

20.
为研究细晶AZ31镁合金薄板超塑气胀成形的最佳工艺参数,利用有限元软件对超塑胀形过程进行了有限元数值模拟分析。通过选取不同的应变速率敏感性指数和成形压力,来分析应变速率敏感性指数和成形压力对厚度分布均匀性的影响,同时对成形过程中的应变速率变化进行了模拟分析。模拟结果表明.应变速率敏感性指数和成形压力对厚度分布均匀性影响很大;应变速率分布情况良好,在所要求的应变速率范围之内,说明应变速率敏感性指数,压力等参数的设计合理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号