首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
竹子是一种以竹纤维为增强体、多孔木质素为基体而组成的天然复合材料。本文借鉴竹子的结构特征,采用高性能热塑性聚合物浸没沉淀相转化法在玻璃纤维(GF)表面沉积梯度孔径分布的多孔聚醚砜(PES)基体,制备仿竹结构单丝玻璃纤维增强多孔聚醚砜基复合材料(GF/PES),并对其微观形貌、拉伸力学性能和“温度-模量”智能响应性进行了研究。结果表明,基于梯度多孔PES基体良好的吸能作用及其对玻璃纤维表面微小缺陷的修复作用,GF/PES的拉伸强度和断裂伸长率最高可分别比GF提高39.11%和58.1%。此外,多孔聚合物基体还可作为各类功能材料的载体,例如在其多孔结构中填充水,当水随着温度变化发生相变时,可赋予GF/PES显著的模量变化,从而制备出“温度-模量”智能响应复合材料。   相似文献   

2.
碳纤维增强聚醚砜的工艺、性能和断裂形貌研究   总被引:1,自引:1,他引:0       下载免费PDF全文
本文介绍了连续碳纤维增强聚醚砜复合材料(CF/PES)的制造工艺与性能.阐述了一种改进的连续纤维增强热塑性复合材料预浸料的制造方法,给出了CF/PES复合材料的最佳模压成型工艺条件,制得了低孔隙率、高机械性能的复合材料.最后,分析了CF/PES的断裂模式和断口形貌.  相似文献   

3.
以聚醚砜(PES)作为第三组分及活化PES作为连续碳纤维(CCF)的表面改性剂制备CCF/聚醚醚酮(PEEK)复合材料,重点研究CCF/PEEK复合材料的制备工艺方法对其性能的影响.结果表明:PES作为第三组分制备的CCF/PEEK复合材料,当填充16wt%的CCF时,复合材料表面电阻降低到107~109 Ω,出现导电...  相似文献   

4.
碳纤维增强杂萘联苯聚醚酮(CF/PPEK)和碳纤维增强杂萘联苯聚醚砜(CF/PPES)是一种新型高性能热塑性复合材料,制备方法和力学性能的研究是使其得到广泛应用的基础.本工作研究了两种复合材料的预浸热压成型工艺,对制备的单向复合材料进行了力学性能实验研究,并基于复合材料细观结构周期性假设,建立了一种细观力学模型.该模型建立起了宏、细观场量的联系,实验及理论计算结果表明该模型能够较好的预测此种复合材料的宏观弹性性能.  相似文献   

5.
为了提高碳纤维(CFs)增强热塑性树脂聚醚砜(PES)复合材料的界面结合力,对PES进行磺化改性,得到磺酸基聚醚砜(SPES)制备的CFs上浆剂,研究了SPES上浆剂对CFs/PES复合材料界面性能的影响和上浆剂质量分数对CFs/PES复合材料的作用效果。结果表明:经过SPES上浆的纤维毛丝量降低、耐磨性提高。同时FTIR和XPS分析表明:SPES中的—SO3H基团与CFs表面微量的活性官能团发生了化学反应,提高了增强体CFs与基体树脂PES间的黏连。当上浆剂含量为1wt%时,CFs/PES复合材料的层间剪切强度(ILSS)提高最显著,比未上浆改性的CFs/PES复合材料的提高了24%。SEM照片证实在此浓度下CFs与PES结合更加紧密。动态力学热分析(DMTA)结果亦证明1wt%的SPES上浆剂提高了CFs/PES复合材料的玻璃化转变温度。  相似文献   

6.
氰酸酯(CE)树脂因具有高玻璃化转变温度、低固化收缩率和优异介电性能,常被作为耐高温或吸波纤维复合材料基体应用于航空航天领域。但由于CE树脂与碳纤维(CF)浸渍黏附性较差、固化温度高、固化物脆性较大,其复合材料制备工艺性较差且固化后易产生分层损伤,严重影响其产品质量及实际应用。本文利用聚醚砜(PES)对CE树脂进行改性,制备出浸润性良好的预浸料以适应各类干法成型复合材料制备工艺。结果表明,PES的引入能够显著提高CF/CE树脂基复合材料的力学性能和热稳定性。与CF/CE单向板相比,7.5wt%PES-CF/CE单向板的弯曲强度提高17%,层间剪切强度提高31%,冲击韧性提高39%,并且纵向热膨胀性系数从-2.07×10-8 K-1降低到-10.7×10-8 K-1,横向热膨胀系数降低20%,改性效果显著。  相似文献   

7.
用阴离子原位聚合法制备聚醚砜/MC尼龙6原位复合材料,研究了聚醚砜与己内酰胺、尼龙6各组分之间的相互作用.结果表明,依靠其组分之间强烈的作用力,使PES能以较小的相畴均匀的分散在尼龙6基体中;酰胺基团上的氢原子能与聚醚砜中的砜基之间产生氢键作用,从而促进了聚醚砜在己内酰胺熔体中的溶解.聚醚砜与尼龙6之间的这种氢键互作用,强烈抑制了尼龙6的分解过程,提高了复合材料的热稳定性,2%PES时,其分解温度提高了79℃.较小含量的PES对复合材料的力学性能影响较小,当其含量超过4%时,尽管复合材料的强度有所下降,但韧性显著提高,体现了刚性有机粒子增韧的作用.  相似文献   

8.
用阴离子原位聚合法制备聚醚砜/MC尼龙6原位复合材料,研究了聚醚砜与已内酰胺、尼龙6各组分之间的相互作用.结果表明,依靠其组分之间强烈的作用力,使PES能以较小的相畴均匀的分散在尼龙6基体中;酰胺基团上的氢原子能与聚醚砜中的砜基之间产生氢键作用,从而促进了聚醚砜在已内酰胺熔体中的溶解.聚醚砜与尼龙6之间的这种氢键互作用,强烈抑制了尼龙6的分解过程,提高了复合材料的热稳定性,2%PES时,其分解温度提高了79℃.较小含量的PES对复合材料的力学性能影响较小,当其含量超过4%时,尽管复合材料的强度有所下降,但韧性显著提高,体现了刚性有机粒子增韧的作用.  相似文献   

9.
CF/PPEK、CF/PPES复合材料高温力学性能研究   总被引:1,自引:0,他引:1  
采用预浸热压成型工艺制备碳纤维增强杂萘联苯聚醚酮(CF/PPEK)和碳纤维增强杂萘联苯聚醚砜(CF/PPES)单向复合材料试样,通过对试样在常温和高温条件下的力学性能测试与分析,研究了高性能热塑性复合材料在高温条件下力学性能及其强度和模量保留率的变化规律.实验表明,在250℃下其拉伸和弯曲强度及模量的保留率均在60%以上,仍具有极高的承载能力.利用Tr-n预测模型对这两种复合材料高温力学性能进行的预测结果与试验值基本吻合,从而验证了这个模型的可行性.  相似文献   

10.
为了研究树脂共混改性对连续炭纤维增强高性能热塑性树脂基复合材料性能及破坏模式的影响,以二氮杂萘联苯结构聚醚砜酮(PPESK)及其共混树脂为基体,T700 炭纤维为增强纤维,通过溶液预浸,热压成型工艺制备单向复合材料。通过对共混树脂溶液黏度测试,复合材料样条三点弯曲、层间剪切和孔隙率试验,并借助SEM断面形貌分析,研究了聚醚酰亚胺(PEI)和聚醚砜(PES)的加入对PPESK复合材料力学性能以及受力破坏模式的影响。结果表明,PEI或PES的加入使复合材料的力学性能提高,孔隙率降低,复合材料受力破坏模式由脱粘破坏向树脂基体内部破坏转变。   相似文献   

11.
基于自制的磺化聚醚砜(SPES)溶液,直接将SPES溶液与聚醚砜(PES)共混配制铸膜液,制备新型的聚醚砜/磺化聚醚砜(PES/SPES)共混超滤膜,简化了制膜过程.考察了铸膜液中PES与SPES总固含量、凝固浴温度、预蒸发时间和添加剂对PES/SPES共混膜结构与性能的影响.研究发现,随铸膜液温度的降低和铸膜液中酸含量的增加,铸膜液的比浓黏度增加;制备的共混膜断面为致密皮层和多孔支撑层组成的不对称结构;随铸膜液PES/SPES总固含量的增加,共混膜的水通量降低,截留率升高;随凝固浴温度升高和预放置时间延长,共混膜水通量增加,截留率降低;聚乙二醇200(PEG200)和丙酮的加入有利于改善膜性能,当加入量为2%时,共混膜的水通量都高于460L/(m~2·h),对PEG6000截留率都大于85%.  相似文献   

12.
采用溶液浸渍和热压成型分别制备了以聚醚砜和聚醚砜/聚苯硫醚为基体的单向连续碳纤维增强复合材料,研究了不同成型温度下复合材料的层间剪切强度和湿热环境下对水分的吸湿过程。结果表明,添加了聚苯硫醚的复合材料在较佳的加工工艺窗口下可以保持原有的层间剪切强度,同时大幅度地增强复合材料的抗水分侵蚀能力。这是由于聚苯硫醚在热压成型过程中,以聚醚砜为晶核在碳纤维表面结晶,形成较为致密的结构。同时红外分析表明,混合树脂极性较小。二者共同作用,可以提高复合材料在使用过程中的安全性和结构的完整性。性能较好的复合材料吸湿过程符合Fick第二定律。  相似文献   

13.
吴唯  陈诗英  宗孟静子 《材料导报》2017,31(20):21-24, 29
本实验制备了纳米Al_2O_3/聚醚砜-环氧树脂复合材料,考察了不同纳米氧化铝和聚醚砜的用量对复合体系力学和介电性能的影响,并对其热稳定性能进行了研究。结果表明:当添加1phr纳米氧化铝(Nano-Al_2O_3)和5phr聚醚砜(PES)时,三元复合材料EP/5PES/1Al_2O_3的拉伸强度提高到58 MPa,断裂伸长率达到13%,冲击强度达到16.2kJ/m~2,相比纯环氧树脂分别提高了61.1%、20.3%和8.0%。而且在100Hz的室温测试条件下,EP/5PES/1Al_2O_3材料的介电常数和介电损耗分别达到7.6和0.016,较纯环氧树脂均有一定幅度的增加。热重分析(TG)结果表明,EP/5PES/1Al_2O_3复合材料的初始分解温度为358℃,比纯环氧树脂提高了14℃,说明热稳定性有较大幅度的提高。  相似文献   

14.
采用微波辐射法制备了膨胀石墨(EG),将其作为增强相加入到聚醚砜(PES)基体中,利用溶液共混法和真空辅助模压成型工艺得到EG/PES复合材料,使用SEM、FTIR和XRD等分析手段表征了EG及其复合材料的微观结构和性能,并对复合材料的力学性能进行了测试。结果表明:PES分子插入到了EG片层内部,并且EG与PES分子之间产生了氢键作用;当EG含量为5.0%(质量分数)时,复合材料的拉伸和弯曲强度达到最大值,分别为94.6 MPa和146.7 MPa,较树脂基体提升了10.5%和7.3%;EG在PES基体内的分散性直接影响了复合材料的力学性能,嵌入到复合材料内部的EG不仅能够改变微观裂纹的走向,还能阻止其进一步蔓延和扩展,改善复合材料内部的应力分布情况。  相似文献   

15.
用乙炔端基砜(ATS)与双酚A型聚砜(PSF)、聚醚砜(PES)、酚酞型聚醚砜(PES-C)制备了热塑性/热固性聚砜共混物及其半互穿聚合性网络(SIPN),并借助DSC技术对ATS及其共混物的固化反应和动态、恒温固化条件对生成SIPN的热行为特征进行了表征。  相似文献   

16.
应用广角X光散射(WAXS)和示差扫描量热分析(DSC)技术研究了聚苯硫醚/聚醚砜共混物及其碳纤维增强聚苯硫醚/聚醚砜混杂基体复合材料的结构特征和熔融、结晶行为.实验结果表明,(1)聚醚砜和碳纤维的混入未使聚苯硫醚的晶型发生改变,但使聚苯硫醚的结晶规整度降低;(2)碳纤维的混入可引起聚苯硫醚熔点降低,而混入聚醚砜并不引起聚苯硫醚的熔点降低;(3)聚醚砜和碳纤维均对聚苯硫醚存在诱导结晶效应,当碳纤维和聚醚砜共存时,聚本硫醚倾向于在碳纤维表面择优成核结晶.   相似文献   

17.
目的 以我国资源丰富的竹子和聚丙烯(PP)作为原料,研究竹材的预处理和成形工艺对其物理力学性能的影响,扩大竹材的应用领域。方法 通过碱液预处理,对竹条进行软化分丝。然后,利用热压技术将所提取的竹子与聚丙烯进行复合,并调节热压工艺,得出最优参数。结果 使用质量分数为6%的NaOH,在100℃下预处理2.5 h,通过辊压疏解,制备长竹纤维束(LBF),LBF的抗拉强度为397.2 MPa。经过处理后,LBF/PP复合材料的储能模量达到9.49 GPa,比未处理的LBF/PP复合材料提升了11.5%。确定了最优热压条件:温度为190℃、时间为20 min、压力为6 MPa。随着长竹纤维含量的增加,LBF/PP复合材料的耐水性降低。结论 使用长竹纤维束所制备的LBF/PP复合材料具有优异的物理力学性能,有望作为结构材料应用于集装箱、托盘等,在包装应用领域有较好的前景。  相似文献   

18.
在碳纤维(DF)内加入聚醚砜(PES)树脂法,利用真空辅助成型(VARI)工艺制备得到改性复合材料,研究真空成型压力参数对汽车用DF增强PES树脂材料力学性能和拉伸断面的影响。研究结果表明:相对于改性前的PES树脂材料拉伸强度,经过0.1、0.25与0.5 MPa处理得到的改性复合材料在拉伸强度方面依次提升了17.36%、41.39%与29.54%;拉伸模量依次提升1.61%、19.35%与10.48%。相对于原始纤维,经过改性形成了更加粗糙的表面结构,使纤维与树脂可以发生更加紧密的结合,经过改性的PES树脂材料形成的断口具有明显的韧性断裂特点。在0.25 MPa下得到的改性PES树脂材料形成了明显断口结构,此时的试样获得了最优的拉伸强度与模量。  相似文献   

19.
曹俊  王洋  张博明 《复合材料学报》2016,33(10):2141-2150
采用溶剂法和热熔法制备了不同有机黏土质量分数的有机黏土/聚醚砜(PES)-环氧复合材料,通过对其微观形态和力学性能的研究,揭示了复合材料的增韧机制。在有机黏土/PES-环氧复合材料中添加T800H(12K)碳纤维,制备了T800H-有机黏土/PES-环氧复合材料预浸料单向带,采用热压罐工艺制备了复合材料单向板,对其I型、II型层间断裂韧性进行了研究。结果表明:T800H-有机黏土/PES-环氧复合材料的层间断裂韧性随有机黏土质量分数变化趋势与有机黏土/PES-环氧复合材料的断裂韧性趋势一致,证明了增韧机制的正确性。   相似文献   

20.
为提高纯聚醚砜(PES)膜的亲水性和抗污染能力,以N,N-二甲基乙酰胺/氯化锂(DMAc/LiCl)体系为溶剂,以聚乙烯吡咯烷酮(PVP K30)为添加剂,采用相转化法制备醋酸纤维素(CA)/聚醚砜(PES)共混膜.探讨和分析了成膜过程中的各种因素对膜纯水通量和BSA(牛血清蛋白)截留性能的影响.确定CA/PES共混膜的最佳铸膜条件为:聚醚砜质量分数18%,PVP K30的质量分数4%,醋酸纤维素质量分数3%,预蒸发时间为20s.对共混膜进行了SEM形貌结构、热稳定性、接触角测试、BSA抗污染性能和共混相容性分析表征.结果表明,DMAc/LiCl体系下制备的CA/PES共混膜亲水性和BSA抗污染性能高于纯PES膜,CA/PES共混体系为部分相容体系,CA/PES共混膜的高温热稳定性稍有下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号