首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《铸造技术》2016,(12):2697-2699
采用功率超声机械搅拌法制备了含6vol.%SiC颗粒增强铝基复合材料;对铸态SiCp/Al复合材料显微组织及其XRD和经过热轧后的显微组织及热轧后轧板的宏观形貌进行了分析。结果表明,制备SiCp/Al复合材料时加入适量的纯镁,可在SiC/Al界面间增加界面过渡相Mg_2Si;轧制使基体材料中碳化硅颗粒的分布进一步均匀化;随着轧制温度的升高,复合材料轧板的边裂减少。  相似文献   

2.
采用粉末冶金法制备30%B4C/6061Al复合材料坯料,经过二次加工(挤压+轧制)后得到复合材料板材,对板材进行T6(530℃保温2 h后中温水淬,175℃时效6.5 h)热处理。采用光学显微镜(OM)和透射电子显微镜(TEM)对热处理前后复合材料的微观组织形貌进行观察,运用显微硬度仪和万能拉伸试验机对复合材料的热处理前后的力学性能进行测试。结果表明:退火态时观察到再结晶晶粒和少量位错;时效态时观察到大量的位错和析出相。热处理状态对复合材料伸长率无明显的影响,但对材料的硬度和抗拉强度影响较大,B4C/6061Al复合材料经T6热处理后硬度和抗拉强度分别提高了15%和12%。  相似文献   

3.
采用粉末冶金法制备30%B4C/6061Al复合材料坯料,经过二次加工(挤压+轧制)后得到复合材料板材,对板材进行T6(530℃保温2 h后中温水淬,175℃时效6.5 h)热处理。采用光学显微镜(OM)和透射电子显微镜(TEM)对热处理前后复合材料的微观组织形貌进行观察,运用显微硬度仪和万能拉伸试验机对复合材料的热处理前后的力学性能进行测试。结果表明:退火态时观察到再结晶晶粒和少量位错;时效态时观察到大量的位错和析出相。热处理状态对复合材料伸长率无明显的影响,但对材料的硬度和抗拉强度影响较大,B4C/6061Al复合材料经T6热处理后硬度和抗拉强度分别提高了15%和12%。  相似文献   

4.
《铸造技术》2017,(5):1051-1053
研究热处理对热轧SiC_p/Al复合材料性能和微观组织的影响。结果发现:退火处理可使颗粒含量为10%的复合材料伸长率提高4倍,T6处理可提高SiCp/6061Al材料的强度和弹性模量。析出相的出现是T6处理后复合材料性能改变的主要原因。  相似文献   

5.
以AZ91D镁合金和平均颗粒尺寸为10μm和10 nm的SiC颗粒分别作为基体和增强相,通过半固态机械搅拌法制备出单、双尺寸SiC颗粒增强镁基复合材料。结果显示,SiCp体积分数为2%的10 nm SiCp/AZ91D复合材料的抗拉强度达到198 MPa,提升了34.7%,屈服强度达到113 MPa,提升了46.7%,伸长率达到6.4%,这主要由于纳米SiC颗粒的晶粒细化作用。断裂机制表明,SiCp/AZ91D复合材料裂纹主要沿微米SiCp-AZ91D的界面扩展。  相似文献   

6.
为探究SiCp对AZ91镁合金在电脉冲处理过程中组织和性能演变规律的影响,通过在AZ91合金中添加1%(体积分数)微米级SiCp制备了SiCp/AZ91复合材料,联合低温正挤压和电脉冲处理对AZ91合金和SiCp/AZ91复合材料的组织进行细化,利用光学显微镜分析显微组织的演化,测试合金和复合材料的室温力学性能。结果表明,和AZ91合金相比,添加了增强相颗粒后的复合材料挤压之后具有更高的位错密度和形变储存能,从而促进电脉冲处理时的静态再结晶过程。电脉冲处理后的AZ91合金及复合材料的屈服强度和抗拉强度分别为320、450 MPa和380、454 MPa。由于SiCp与镁基体界面处应力集中而形成的微裂纹,导致复合材料抗拉强度增幅较小。  相似文献   

7.
采用热等静压工艺分别制备了SiCp体积分数为35%、45%和55%的SiCp/2024Al复合材料,研究了固溶时效处理对3种复合材料硬度、弯曲强度和冲击性能的影响。结果表明,3种SiCp体积分数的复合材料均由Al、SiC和Al2Cu相组成,致密度均较高,基体与SiCp增强体之间结合紧密。固溶时效处理(T6)可以显著提升复合材料的硬度。SiCp体积分数为35%、45%和55%的复合材料的时效硬化曲线变化规律基本一致,均在时效2 h时达到峰时效状态,硬度分别比制备态复合材料提升了51.56%,41.51%和18.78%。SiCp体积分数为35%的时效态复合材料弯曲强度提升幅度最显著,由622.48 MPa提升至838.11 MPa。随着SiCp体积分数的增加,制备态复合材料的冲击吸收能量由3.43 J逐渐降低至1.00 J,T6处理会进一步降低复合材料的冲击性能。  相似文献   

8.
使用内聚力模型及有限元分析方法,在含实际形貌SiCp颗粒增强AZ91D镁基复合材料有限元模型中引入孔隙缺陷。分析不同孔隙率对SiCp/AZ91D复合材料在单轴压缩情况下的裂纹萌生及扩展的影响。结果表明:无孔隙的SiCp/AZ91D复合材料裂纹萌生在颗粒尖角与基体交界处,含孔隙的复合材料在基体孔隙以及颗粒尖角与基体交界处均会萌生裂纹,复合材料的孔隙率越高,其抗压强度和屈服强度越低,断裂裂纹长度越长,孔隙率的增加使得复合材料的裂纹萌生和断裂的时间提前,加速了复合材料裂纹萌生扩展直至断裂。  相似文献   

9.
采用粉末冶金工艺制备了WCp/B4Cp/6063Al复合材料,通过SEM和TEM对复合材料的显微组织进行了表征,研究了热处理工艺对复合材料力学性能的影响。结果表明,热处理能使复合材料的拉伸强度明显增加,与T4热处理相比,T6热处理能使复合材料获得更大的拉伸强度,但材料的伸长率和冲击韧度要小于T4态的。热处理后复合材料的断裂形貌表现为基体合金的韧性断裂、基体和颗粒间的界面脱粘和颗粒断裂现象。热处理后复合材料出现了新的析出相,这有助于提高复合材料的拉伸强度。  相似文献   

10.
采用喷射成形技术和模锻工艺成功制备45%SiCp/6092Al、5%β-LiAlSiO4/6092Al和(45%SiCp+5%β-LiAlSiO4(Euc))/6092Al(质量分数)基复合材料。利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和X射线衍射仪(XRD)对复合材料试样的显微组织、界面结构及物相成分进行分析,采用热膨胀仪和电子万能试验机分别对复合材料试样的热膨胀性能、弯曲强度和模量进行测试。结果表明:(45%SiCp+5%Euc)/6092Al基复合材料中碳化硅颗粒和Euc颗粒在6092Al基体中分布均匀,并与铝基体形成强力结合界面,SiCp/Al和Euc/Al界面平直清晰,没有发现界面反应。复合材料试样经固溶人工时效后,在303~473 K温度范围内,(45%SiCp+5%Euc)/6092Al基复合材料试样的线膨胀系数为14.68×10-6 K-1,弯曲强度和模...  相似文献   

11.
SiCp/Al复合材料具有优异的性能,在尖端的空天装备中应用广泛,但由于其组成相碳化硅颗粒和铝合金之间存在的巨大性能差异,使得加工过程中极易出现加工损伤,严重影响SiCp/Al复合材料产品的精度和使役性能,制约着SiCp/Al复合材料的工程化应用。本文围绕SiCp/Al复合材料低损伤加工技术,从加工损伤的形成机理、加工损伤的影响因素、低损伤加工工具和加工工艺3个方面对国内外相关的研究进展进行分析,总结目前针对SiCp/Al复合材料低损伤加工技术研究现状和不足之处,并指出发展趋势和方向。  相似文献   

12.
通过中温热压法(热压温度在固液相线之间)制备出不同碳化硼含量的铝基复合材料,并轧制成板.经T6热处理后对B4C/Al复合材料进行微观形貌、力学性能分析.结果表明,碳化硼颗粒分布均匀,有较少的微气孔缺陷,随着碳化硼含量的增加,增强颗粒尺寸明显变小.B4C/Al复合材料的抗拉强度、屈服强度和断后伸长率随着碳化硼含量的增加而减小,与6061铝合金相比降低幅度较大,硬度随着碳化硼含量的增加而提高,靠近颗粒处硬度显著提高.B4C/Al复合材料的断裂方式是脆性断裂.  相似文献   

13.
向铝熔体中添加脱水的硫酸铝铵,于900℃下发生分解反应,反应分解的Al2O3原位生成颗粒增强铝基复合材料。SEM观察表明,Al2O3颗粒在铝基体中细小弥散分布,形成球形的、不团聚的增强体颗粒。与基材相比,Al/Al2O3复合材料的耐磨损性能明显提高,耐磨性是基材的4倍,且由硫酸铝铵原位生成的复合材料耐磨性优于添加氧化铝形成的复合材料。拉伸实验结果显示,复合材料的抗拉强度没有明显变化,且塑性有所降低。  相似文献   

14.
采用搅拌摩擦加工制备了以AlCoCrFeNi2.1高熵合金为增强相的6061铝合金复合材料(AlCoCrFeNi2.1/6061Al),重点研究了加工道次对复合材料组织均匀性、界面结合以及力学性能的影响。结果表明,随搅拌摩擦加工道次的增加,AlCoCrFeNi2.1/6061Al复合材料组织均匀性及力学性能均得到明显改善.复合材料中基体与增强相界面结合良好,界面处扩散层厚度随加工道次增加而增大。相较于不添加增强相的6道次搅拌摩擦加工铝合金,AlCoCrFeNi2.1增强相颗粒的引入可进一步细化晶粒并提高抗拉强度,且随着加工道次增加,复合材料抗拉强度及断后伸长率均显著升高。2,4道次下的断口存在明显的颗粒聚集区,而6道次下断口表面颗粒分布均匀且呈现大量韧窝,为典型的韧性断裂。该现象主要归因于载荷传递效应、弥散强化和细晶强化3大强化机制。  相似文献   

15.
在400 ℃条件下采用累积复合轧制(ARB)工艺制备Al/Zn层状复合材料。采用SEM,TEM等设备对第二轧制周期试样及第三轧制周期的试样进行显微组织观察,结果表明:在轧制过程中,Al/Zn层间界面不同成分发生相互扩散,形成扩散层;随着轧制周期的结束,扩散层中过饱和的Zn原子随温度的降低而脱溶析出,在消除晶粒边界及内部位错的同时细化晶粒。在试样内部,因为扩散层中Zn原子存在浓度梯度,过饱和的Al基体中析出的富Zn相存在不同典型的组织形态。采用万能拉伸试验机对第一、第二、第三轧制周期试样进行力学性能测试,结果显示,随着轧制周期的增加,Al/Zn层状复合材料的抗拉强度和伸长率均有大幅度提升,抗拉强度由第一轧制周期的128.81MPa增加至第三轧制周期的351.54MPa,提升了173%,同时伸长率由6.66%提升至11.08%。采用SEM对试样断口进行观察后发现,断口表现出明显的复合材料强界面裂纹偏转现象。采用累积复合轧制(ARB)工艺制备Al/Zn层状复合材料,因为存在复合材料强界面裂纹偏转作用以及晶粒的细化作用,表现出良好的综合力学性能。  相似文献   

16.
Al基复合材料可以充分发挥增强体与Al合金的性能协同作用,在保持Al合金低密度和良好的加工性能的基础上,进一步显著提高其强度和韧性。因此,在新一代运动器械中复合材料展现出了令人瞩目的应用前景。采用粉末冶金法制备了40vol%B_4C/6061Al复合材料,利用光学显微镜(OM)、扫描电镜(SEM)、透射电子显微镜(TEM)和拉伸试验等对B_4C/6061Al复合材料组织、拉伸性能及强化机理进行研究。结果表明,试验制备出的40vol%B_4C/6061Al复合材料组织致密,颗粒分散均匀,无较明显的孔洞出现。复合材料的抗拉强度较纯6061Al合金的增加约58.43%,且具有较好的加工成形性能。TEM表征结果表明,复合材料的强化效果不仅来源于B_4C颗粒的引入,还得益于B_4C颗粒与Al界面的良好结合以及Al基体中弥散分布的球形β'纳米析出相。  相似文献   

17.
采用搅拌摩擦加工制备了以AlCoCrFeNi2.1高熵合金为增强相的6061铝合金复合材料(AlCoCrFeNi2.1/6061Al),重点研究了加工道次对复合材料组织均匀性、界面结合以及力学性能的影响. 结果表明,随搅拌摩擦加工道次的增加,AlCoCrFeNi2.1/6061Al复合材料组织均匀性及力学性能均得到明显改善. 复合材料中基体与增强相界面结合良好,界面处扩散层厚度随加工道次增加而增大. 相较于不添加增强相的6道次搅拌摩擦加工铝合金,AlCoCrFeNi2.1增强相颗粒的引入可进一步细化晶粒并提高抗拉强度,且随着加工道次增加,复合材料抗拉强度及断后伸长率均显著升高. 2,4道次下的断口存在明显的颗粒聚集区,而6道次下断口表面颗粒分布均匀且呈现大量韧窝,为典型的韧性断裂. 该现象主要归因于载荷传递效应、弥散强化和细晶强化3大强化机制.  相似文献   

18.
通过半固态搅拌铸造的方法制备了Al+SiC预制颗粒增强ZL101基及ZL101-Mg基复合材料,研究了T6热处理对该复合材料微观组织及力学性能的影响。结果表明,T6热处理对Al+SiC预制颗粒增强ZL101基复合材料和Al+SiC预制颗粒增强ZL101+Mg基复合材料中SiC颗粒的分布没有明显影响。但T6热处理使Al+SiC预制颗粒增强ZL101复合材料中共晶硅细化,Al+SiC预制颗粒增强ZL101+Mg复合材料中共晶硅长大变粗。T6热处理对Al+SiC预制颗粒增强ZL101复合材料抗拉强度的平均提升率达到了54.44%,对其伸长率的平均提升率为5.47%。对Al+SiC预制颗粒增强ZL101+Mg复合材料抗拉强度的平均提升率为13.52%,对其伸长率的平均提升率为31.5%。  相似文献   

19.
采用半固态搅拌铸造方法制备出亚微米SiCp增强AZ91复合材料(S1)、微米SiCp增强AZ91复合材料(M10)以及双尺度SiCp增强AZ91复合材料(S1+M9)。利用OM、SEM、XRD、浸泡法、电化学测试等研究了不同尺寸SiCp对铸态AZ91镁合金显微组织与腐蚀性能的影响。结果表明,SiCp的添加可以显著细化AZ91镁合金中半连续网状Mg17Al12相,这归因于SiCp对Mg17Al12相的异质形核作用。Mg17Al12相能够包裹亚微米SiCp析出,并且可以依附微米SiCp表面析出。通过对比含有相同SiCp体积分数的S1+M9和M10,可以看出S1+M9的耐蚀性相比M10显著降低,表明当SiCp含量一定时,SiCp  相似文献   

20.
采用球磨和真空热压烧结结合的工艺制备石墨烯增强铝基(Gr/Al)复合材料,研究不同粒径铝粉混合对复合材料微观组织和力学性能的影响。结果表明,利用球体最密堆积原理设计的多粒径铝粉混合,M1(1μm∶10μm按1∶1.5混合)和M2(10μm与100μm按1∶1.5混合)的致密度均高于单一粒径的试样(S),M2致密度达到96.2%。M1试样抗拉强度和伸长率相较于S试样有所降低,M2试样抗拉强度和伸长率均提高,其中伸长率提升31.8%。多粒径混合可促进分散小粒径铝粉和石墨烯,有效降低孔隙率,在减少原始颗粒界面的同时增加裂纹扩展路径,大尺寸粒径颗粒的加入使得复合材料的塑性大幅提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号