首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以TA1/6061铝合金双金属为研究对象,采用Gleebe-3800热模拟试验机,在变形温度为350~500℃、应变速率为0.01~1 s-1、变形量为40%的条件下进行了单向热压缩复合试验,研究了TA1/6061铝合金双金属的热变形行为,建立了TA1/6061铝合金双金属本构方程及热加工图。结果表明,TA1/6061铝合金双金属热变形过程中的流变应力随着温度的上升和应变速率的降低而减小;基于试验数据建立的Arrhenius本构方程可以有效预测特定真应变下的真应力,其相关性系数为0.99642,热变形激活能为231434 J·mol-1;基于热加工图、SEM图像和EDS线扫描图像,确定最优热加工工艺窗口为:变形温度为482~500℃,应变速率为0.011~0.192 s-1。  相似文献   

2.
利用Gleeble-1500试验机进行变形温度为400~480℃、变形速率为0.001~10 s-1的单轴热压缩试验,得到了不同变形条件下的真应力-真应变曲线,建立了不同应变量下的热加工图,研究了挤压态2219铝合金在不同变形条件下的微观组织演变规律。研究表明:在所选择的变形区间内,变形抗力随着变形温度的增加以及变形速率的降低而降低。分析了不同应变量条件下的2219铝合金热加工图,并结合微观组织进行验证,结果吻合良好。最终,确定了2219铝合金最佳热变形区间为:应变速率为0.001~0.368 s-1、变形温度为430~480℃,在所确定的可加工区域动态软化机制为动态再结晶,热加工之后晶粒为均匀等轴状。  相似文献   

3.
采用Gleelbe-3500热力模拟试验机对2507双相不锈钢在900~1 150℃,以0.01~10 s-1的应变速率进行了单向热压缩试验,以研究热变形参数对其热加工行为的影响。根据热压缩变形时的真应力-真应变曲线获得双相不锈钢基于动态材料模型理论的热加工图,并通过金相检验对热加工图进行验证。结果表明:2507双相不锈钢的真应力-真应变曲线有两个特征,即高温或应变速率较大时的动态回复和低温或应变速率较小时的动态再结晶。根据热变形方程计算得到该双相不锈钢的热变形激活能Q为473.01 kJ/mol,并构建了峰值应力本构方程。结合不同变形条件下的应力-应变曲线和显微组织,建立了2507双相不锈钢的热加工图,并确定了其最佳的热加工工艺区间为变形温度950~1 100℃,应变速率0.01~0.85 s-1,该区域的功率耗散系数均大于0.3,发生了明显的奥氏体动态再结晶。  相似文献   

4.
以支承辊常用材料铸态Cr5钢为研究对象,在单道次热压缩试验的基础上,对其在不同试验参数下的热变形行为及热加工图进行分析研究。试验中,变形温度为850~1220℃,变形速率为0.01~1 s-1,真应变为0.7。利用试验数据绘制了铸态Cr5钢的真应力-真应变曲线,得出影响流变应力的因素。并通过拟合曲线计算了各待定材料系数,给出了铸态Cr5钢的流动应力方程。最后,基于真应力-真应变曲线,绘制了0.1~0.6应变范围内的热加工图。结果表明:提高变形温度以及减小应变速率可以降低Cr5钢的流变应力,有助于动态再结晶的发生;而随着应变的增加,失稳区域与功率耗散因子变大。Cr5钢高温下最适宜的加工参数区间为:变形温度为1000~1200℃,应变速率为0.03~0.37 s-1。  相似文献   

5.
采用Gleeble-3800热模拟压缩试验机对热等静压态FGH96合金进行了不同温度和应变速率的等温热压缩试验,研究了FGH96合金在变形温度分别为1040、1070、1100、1130 ℃,应变速率为0.001、0.01、0.1和1 s-1,最大真应变为0.7条件下的高温热变形行为,分析了真应力-真应变曲线,建立了本构方程,并利用Origin软件构建了热加工图,结合变形温度和应变速率对组织的影响确定了FGH96合金合适的热加工参数。结果表明,热等静压态FGH96合金的真应力-真应变曲线呈现典型的动态再结晶特征,其峰值应力随变形温度的降低和应变速率的增加而增加,结合本构方程、热加工图以及微观组织确定了FGH96合金合适的热加工区域为变形温度1060~1080 ℃,应变速率0.0001~0.004 s-1。  相似文献   

6.
采用Gleeble-3500热模拟试验机对在变形温度500~650℃和应变速率0.001~1 s-1条件下的60NiTi合金进行热压缩变形,分析其热变形行为和显微组织,建立变形本构模型,绘制热加工图。结果表明,当压缩温度升高或应变速率降低时,峰值应力减小。合金的热变形激活能为327.89 k J/mol,热加工工艺参数为变形温度600~650℃和应变速率0.005~0.05 s-1。当变形温度升高时,合金的再结晶程度增大;当应变速率增大时,位错密度和孪晶数量增大,Ni3Ti相易于聚集;Ni3Ti析出相有利于诱发合金基体的动态再结晶。动态回复、动态再结晶和孪生是60NiTi合金热变形的主要机制。  相似文献   

7.
为准确获得TC21钛合金塑性加工的变形特征和热加工条件,合理设计锻造工艺参数,利用Gleeble-3500热模拟机进行等温恒应变速率热压缩试验,研究了TC21钛合金在变形温度为830~1010℃、应变速率为0.01~10 s-1条件下的热变形行为,采用Arrhenius双曲线正弦函数推导出TC21钛合金本构方程。并基于动态材料模型(Dynamic Materials Model, DMM)建立了TC21钛合金的热加工图。结果表明,在本试验的变形条件下,该合金的流变应力随着变形温度的降低和应变速率的升高而增大。根据热加工图确定了合金的热加工安全区域为:变形温度为900~940℃、应变速率为0.01~0.05 s-1和变形温度为970~1010℃、应变速率为0.01~0.08 s-1。  相似文献   

8.
为了预测含铝节镍型奥氏体耐热钢(AFA钢)的热变形行为,利用Gleeble-3500热力模拟试验机对AFA钢进行了温度950~1150℃、应变速率0.01~10 s-1、真应变为0.51~1.2的高温热压缩试验,构建了本构方程,并建立了热加工图。结果表明,在同一应变速率下,随着变形温度的升高,AFA钢的流变应力逐渐降低,在同一变形温度下,随着应变速率的增加,流变应力随之增加。在真应变为0.69(变形量为50%)下,预测应力与实际应力的线性相关系数R2为0.998 53,随着应变的增加,材料的失稳区域先减小后增大,集中于低温区;高效率区域变大,且高效率区域集中于变形温度为1100~1150℃、应变速率为0.01~0.1 s-1之间,说明AFA钢适合在高温低应变速率的情况下进行热加工。  相似文献   

9.
对喷射态2050铝合金进行了温度为350~530℃,应变速率为0.01~10 s-1的热压缩实验,分析了试样表面开裂情况及其与应力-应变曲线间的关联性。结果表明,应变速率低于1 s-1时,变形温度越高、应变速率越低,试样表面越容易开裂。试样在应变速率为0.01 s-1、温度为470℃压缩时表面出现了肉眼可见的微裂纹;随着温度增加至530℃,试样开裂程度加剧。在温度为530℃时,随着应变速率由0.01 s-1增加至10 s-1,试样开裂程度先减小后增大,应变速率为1 s-1的试样开裂程度最小。应变速率一定时,不同温度下应力-应变曲线变化趋势基本一致,变形温度越低、应变速率越大,变形抗力越高,温度为350℃、应变速率为10 s-1时峰值应力最高,为119.8 MPa,温度为530℃、应变速率为0.01 s-1时峰值应力最低,为15.3 MPa。对比开裂与未开裂试样的应力-应变曲线,未发现试样表面开裂对应力-应变曲线造...  相似文献   

10.
采用热模拟试验法研究了变形温度(340~500℃)和应变速率(0.01~25 s-1)对均匀化态Mg-6Gd-1.2Y-0.53Zr合金动态再结晶(DRX)临界应变及体积分数的影响,通过构建热加工图优化了其热加工工艺参数范围。结果表明,在0.01~1 s-1的低应变速率下,该合金的动态再结晶(DRX)临界应变量随变形温度的升高而升高,而在10~25 s-1高应变速率下,DRX临界应变量随变形温度的升高而略微下降。应变速率及变形温度的升高都使DRX体积分数增大,在500℃、25 s-1条件下,合金的动态再结晶体积分数最高,达90.0%。根据构建的热加工图,当变形量在30%~80%之间时,较佳的热加工工艺区间为400~500℃、0.01~1 s-1以及420~500℃、10~25 s-1。在10~25 s-1应变速率下,当变形量为10%~80%时,合金最适宜的变形温度为460~500℃。  相似文献   

11.
采用Gleeble-3800热模拟试验机对0.2%Sc-2%TiB2/6061复合材料进行热压缩实验,研究了该材料在变形温度为623~773 K、应变速率为0.001~1 s-1条件下的热变形行为,基于应力应变曲线,构建了材料的本构方程及热加工图。结果表明:0.2%Sc-2%TiB2/6061复合材料的流变应力随变形温度的升高和应变速率的降低而降低,材料的热变形激活能为227.751 kJ/mol;在热压缩过程中,失稳区主要出现在高应变速率区域(663~773 K,0.132~1 s-1)及低温区域(623~655 K,0.001~0.040 s-1),最优的热加工区域为变形温度703~773 K、应变速率0.017~0.107 s-1。热变形过程中该材料的软化机制主要为动态回复。  相似文献   

12.
采用热模拟试验机对轧制态6082-T6铝合金进行热压缩试验,分析了合金在变形温度100~400 ℃,应变速率0.01 s-1条件下的流变应力,对不同温度热变形的微观组织进行了表征。结果表明,轧制态6082铝合金的力学性能受变形温度和轧制方向的影响。变形过程中应力呈现负的温度敏感性,即随着变形温度升高,应力不断下降。合金表现出明显的力学性能各向异性,压缩强度在与轧制方向呈0°和90°较高,45°方向强度较低。经过热压缩变形后,与轧向呈不同方向的6082-T6铝合金的晶粒组织均沿着剪切力方向发生扭曲,同时,变形温度对晶粒组织的演变影响不大。随着变形温度的升高,合金基体内的位错密度明显下降,析出相发生粗化。  相似文献   

13.
采用Gleeble-3500热模拟试验机,研究了耐热钢2Cr12Ni4Mo3VNbN在变形温度为900~1200℃、应变速率为0.01~1 s-1、变形量为0.5条件下的热压缩变形行为和微观组织演化规律。基于真应力-真应变曲线分析不同变形温度和应变速率对试验钢热变形行为的影响,采用Arrhenius双曲正弦方程构建耐热钢2Cr12Ni4Mo3VNbN的流变应力本构模型,并结合动态材料模型(DMM)绘制了热加工图。结果表明,流变峰值应力随变形温度升高或应变速率下降而降低,在应变速率为0.1 s-1时,变形温度达到1000℃后开始出现再结晶,且随变形温度升高再结晶晶粒越大;在不同温度下组织中均发现有δ铁素体,其含量随温度升高而增加。结合热加工图和微观组织分析,确定了耐热钢2Cr12Ni4Mo3VNbN的最佳热加工区域为1068~1172℃, 0.08~0.12 s-1。  相似文献   

14.
AM355不锈钢的热变形行为   总被引:1,自引:0,他引:1       下载免费PDF全文
使用Gleeble-3800热模拟试验机对锻造态AM355不锈钢进行等温热压缩试验,应变速率选择0.01~10 s-1,变形温度选择1173~1423 K。热变形后的组织通过光学显微镜、电子背散射衍射、透射电镜进行观察。基于Arrhenius模型采用峰值应力构建了本构方程,并对其改进得到了准确度更高的本构方程。采用动态材料模型构建了热加工图。由热加工图与变形后的组织得到了真应变为0.9时的热加工窗口。结果表明,适用于AM355钢的最优热加工区域为变形温度1250~1300 K、应变速率0.01~0.03 s-1与变形温度1300~1400 K、应变速率0.01~10 s-1及变形温度1400~1423 K、应变速率0.5~10 s-1,该区域下能量耗散率均小于0.36,且发生了完全的动态再结晶。此外,还确立了完全动态再结晶时奥氏体晶粒尺寸ddrx与Z参数的关系。  相似文献   

15.
利用Gleeble-3800热模拟试验机在变形温度为950~1150℃、应变速率为0.1~10 s-1,最大变形量为50%的条件下对15Cr16Ni2MoN钢进行了单道次热压缩试验。根据应变硬化速率θ-应力σ曲线的拐点以及-dθ/dσ-σ曲线计算得到临界动态再结晶(DRX)的临界应力σc与温度T的关系。结果表明,在高应变速率(1和10 s-1)下观察到较为稳定的流动行为,在低应变速率0.1 s-1时,DRX程度更充分并显著改变了真应力-应变曲线变化趋势。DRX发生需要的临界应力σc随温度的升高而逐渐降低,随应变速率的增加逐渐提升。基于Arrhenius模型预测了合金钢的组织演化规律,绘制了在不同应变量下的热加工图,确定最佳热加工区间为变形温度为1030~1070℃,应变速率为0.10~0.22 s-1,并通过金相显微组织观察予以验证。  相似文献   

16.
通过热压缩实验研究了GH141镍基高温合金在变形温度为1040~1160℃、应变速率为0.01~10 s-1条件下的热变形行为和组织演变,分析变形温度和应变速率对流变行为的影响,对流变应力进行摩擦、温度和应变修正补偿,用修正后的流变应力构建更加精准的本构方程并绘制热加工图,分析不同热加工区的微观组织演变以验证得到的最优热加工区。结果表明:压缩流变应力对变形温度和应变速率较为敏感,综合摩擦、温度变化和应变补偿修正的本构方程能较好地预测不同变形条件下的热压缩流变应力,结合热加工图及不同热加工区域内的微观组织演变确定最优热加工区为变形温度1130~1145℃、应变速率为0.1~5 s-1,此区域内动态再结晶完全,晶粒内部几乎不存在畸变,晶粒组织为等轴晶,且较均匀。  相似文献   

17.
采用Thermecmastor-Z热模拟试验机研究了试验钢在800~1150 ℃、应变速率0.01~10 s-1的热压缩变形行为,并观察变形后显微组织。基于试验数据分析,确定了试验钢在奥氏体区的热变形方程,建立试验钢在0.8真应变下的热加工图。结果表明:试验钢的流变应力和峰值应变随变形温度的升高而减小;试验钢在奥氏体区的热变形激活能为385.91 kJ/mol。根据试验钢功率耗散及流变失稳判据确定最佳热加工工艺参数为热变形温度范围1050~1150 ℃和应变速率0.01~0.1 s-1。在该范围内,试验钢发生完全动态再结晶,功率耗散系数为17%~32%。  相似文献   

18.
镍基粉末高温合金的变形抗力大、热塑性较差、热加工窗口窄,而且在热加工过程中易产生裂纹和流动不稳定等缺陷。本文采用Gleeble-3500热模拟实验机对挤压态新型镍基粉末高温合金进行热压缩,压缩温度为1050~1150℃、应变速率为0.001~1 s-1,压缩真实应变为0.69。基于双曲正弦型Arrhenius函数,计算该合金的热激活能Q、构建本构方程,采用多项式拟合摩擦、温度变化、应变补偿的影响,对应力-应变曲线及本构方程进行修正,绘制能量耗散图和热加工图。结果表明:该合金的热激活能Q为536.36 kJ/mol,其在变形温度为1075~1150℃、应变速率为10-3~10-1.5 s-1的条件下有较好的加工性能,但当应变速率为0.001 s-1时,晶粒组织较为粗大,γ′相溶入基体。  相似文献   

19.
利用Gleeble-3800热模拟实验机,对自主研发的Si-Cr-Mo改进型H13热作模具钢——3Cr2Mo3钢进行热压缩实验,研究了其在变形温度为950~1200℃、应变速率为0.01~10 s-1条件下的热变形行为。基于实验得到的真应力-真应变曲线,建立了Arrhenius型本构方程,并对其进行真应变补偿。由动态材料模型构建了3Cr2Mo3钢的热加工图,并得到了最佳热加工范围。利用有限元软件DEFORM和光学显微镜,研究了3Cr2Mo3钢在热变形过程中的温度场与微观组织的关系。结果表明:3Cr2Mo3钢的真应力受应变速率和变形温度的影响,且在低应变速率下(0.01 s-1)出现明显的动态软化特征,6次真应变补偿型本构方程的拟合精度高;实验条件范围内,3Cr2Mo3钢的最佳热加工范围为变形温度为1110~1200℃、应变速率为0.01~1 s-1;有限元软件DEFORM温度场结果显示,随着变形温度的升高和应变速率的降低,试样的心部与表面的温度场分布均匀,微观组织为均匀细小的动态再结晶晶粒。  相似文献   

20.
采用Gleeble3500热力模拟机对Mg-6Sn-3Al-1Zn合金在应变速率分别为0.001、0.01、0.1和1 s-1,热力模拟机的温度分别为573、623、673和723 K进行了热压缩试验研究。结果表明,Mg-6Sn-3Al-1Zn合金在热变形行为中真应力与压缩温度成反比,但真应力与应变速率成正比。构建了合金的双曲正弦本构模型,揭示了Mg-6Sn-3Al-1Zn合金热加工时的变形机制,以及变形温度、应变速率和流变应力之间的关系。采用峰值应力与应变量分别为0.1、0.3和0.5时的应力,根据动态材料模型理论得到合金的热加工图。结果表明,该合金的最佳加工温度范围和应变速率范围分别为708~723 K和0.001~0.04 s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号