共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
基于PCA算法的人脸识别研究 总被引:1,自引:0,他引:1
介绍了PCA算法及其在人脸识别中的应用。PCA算法是一种基于统计的算法,其优点是识别率高,速度快。基于PCA算法的特征脸方法首先根据人脸数据库训练出一系列的特征脸,然后把人脸数据库中的每个人脸图片进行映射,得出每个人的特征系数,这组系数可以表示该张图片。最后计算出待识别样本的特征系数,并与人脸数据库中的特征系数一一进行比较,以距离相近的作为识别结果。 相似文献
3.
4.
提出一种主成分分析(PCA)和遗传算法(GA)相结合的人脸识别方法.利用遗传算法进行特征矢量的选择,以构成最有利于分类的特征空间.通过对ORL和Yale两个人脸数据库的实验结果,表明PCA和GA相结合的人脸识别算法优于传统的PCA人脸识别算法. 相似文献
5.
由于人耳图像自身的特点,基于外观形状特征如利用边缘或耳廓压痕的识别方法存在很大的缺陷,尝试采用了基于主成元(PCA)的分析方法提取人耳特征,然后运用BP神经网络进行识别。他完全克服了在以往应用外观形状特征进行识别时存在的错误率过高和特征提取预处理要求过于苛刻的问题。实验结果表明该方法实用、有效,可使识别率达到99%以上,有着广泛的研究价值和应用前景。 相似文献
6.
二维主分量分析的脉内调制识别算法研究 总被引:2,自引:0,他引:2
随着雷达信号脉内调制方法日趋复杂,单纯地利用时域或频域的算法来进行信号调制类型的识别已很难奏效.借助于雷达信号的时频分布图像,提出了一种在时频联合域上进行信号识别的新算法.首先揭示了时频分布图像中确实蕴含着信号调制类型的本质特征,然后详细阐述了利用二维主分量分析来提取时频分布图像特征参数的算法,最后对算法进行了仿真,并从识别率、算法复杂度以及硬件需求和训练时间3个角度进行了比较.结果表明,该算法提取的特征参数具有很好的鲁棒性,可以取得较高的识别率,同时可以降低硬件需求,缩短训练时间. 相似文献
7.
提出了一种基于二维加权主元分析的方法进行人脸识别。该方法考虑了人脸的不同部位所包含的识别信息量不同,对人脸的不同部位赋予不同的权重,并结合二维主元分析方法求解加权子空间,然后将人脸样本向该子空间进行投影来提取人脸特征,最后采用最近邻距离分类器进行分类。该方法在NUST603人脸图像库中进行了实验,实验结果表明了该方法的有效性。 相似文献
8.
基于双向主成分分析和压缩感知的人脸识别算法 总被引:1,自引:0,他引:1
提出了一种双向主成分分析(BD-PCA)与基于光滑l0范数(SL0)相结合的人脸识别算法(BP-SL0)。首先利用BD-PCA对所有的训练图像降维,然后将降维后的人脸图像按列拉伸成一个向量,并将其组成字典矩阵,同时对待测试图像进行相同处理,最终通过SL0算法求解优化问题。实验结果表明,该算法获得了较高的识别率和重建效果,且效果优于单独使用BD-PCA和SL0算法。 相似文献
9.
基于PCA算法的人脸识别 总被引:2,自引:1,他引:2
PCA算法作为一种数值分析技术,主要的应用是用于简化数据、降低数据维度。将PCA算法应用到人脸识别,能提取出人脸图像中最主要特征,去除数据的冗余和噪声。文中采用PCA进行人脸识别,能为人脸识别提取区分度高的特征数据,有效提高了识别的准确性。且在ORL和YALE人脸库进行了实验。实验结果表明,该方法对实验的人脸图像有较高的识别率。 相似文献
10.
基于改进2DPCA的红外图像人脸识别方法 总被引:1,自引:1,他引:1
红外成像具有抗干扰性强、独立于可见光源、防伪装等优点,这使得红外图像人脸识别可以在很大程度上弥补可见光人脸识别技术的缺陷和不足。结合红外图像人脸识别的特点,提出了一种基于改进2DPCA的红外图像人脸识别方法。在特征提取中加入Fisher思想,弥补传统2DPCA的缺陷。实验结果表明,这种识别方法不论从理论上还是从实验上都是可行的,具有良好的识别能力。 相似文献
11.
基于混合核函数的快速KPCA人脸识别算法 总被引:1,自引:0,他引:1
为提高人脸识别的速率和识别率,文中提出一种基于混合核函数的快速核主成分分析算法用于进行人脸识别,首先构造两种混合核函数,利用均值矢量的方法构建核矩阵,并利用文中提出的核主成分分析算法计算核矩阵的特征向量。分别在ORL和AR人脸数据库中做了相关实验,并且与传统的核主成分分析方法在识别率和算法运行时间上进行了比较,结果表明,文中所提核主成分分析方法具有较高的识别率和更短的运行时间,从而为实时地具有大数据的人脸识别系统提供技术支持。 相似文献
12.
针对家庭辅助生活应用场景下的目标意图识别和异常行为判别问题,提出了一种基于目标轨迹的行为分析方法.首先,提出了关键点和关键区域的概念,将家庭环境划分为不同的关键点和关键区域,并以此来描述和区分不同轨迹;然后,提出了利用混合高斯模型的关键点及关键区域获取算法,将轨迹转化为关键点及关键区域表示,并以此为基础进行了行为意图的识别和部分异常轨迹的判断;最后,借助主成分分析的方法弥补混合高斯聚类在异常轨迹识别方面的缺陷,提高了识别准确率.实验表明,该方法能够有效的对行为意图和异常行为进行识别. 相似文献
13.
14.
文中提出了一种基于外观的线性和非线性人脸识别方法,所用的线性算法有主成分分析(PCA)和线性判别分析(LDA)。两种非线性方法分别是核主成分分析(KPCA)及核费希尔分析(KFA),线性降维投影方法基于二阶相依性编码模式信息,非线性方法用于处理三个或更多像素之间的关系。首先通过Gabor对图片进行预处理,然后采用线性、非线性分析进行降维。通过马哈利诺比斯-余弦(Mahcos)度量用于定义两幅图像通过相应的降维技术后的相似性度量。实验表明,当与Gabor小波一同使用时,LDA和KFA的性能最高,分别为CMC和ROC结果的93.33%。通过对AT&T数据库400幅图像的综合分析,发现线性和非线性算法的性能受图像分类数目、图像预处理及识别测试集的人脸图像数目的影响。 相似文献
15.
王刚 《微电子学与计算机》2008,25(4):188-191
设计并实现了基于Adaboost和PCA的动态人脸识别考勤系统。利用AdaBoost快速人脸检测方法为基础,然后使用PCA方法来实现人脸识别.实验结果表明,利用该方法开发的动态人脸识别考勤系统具有识别率高、实用性好、可靠性强等特点. 相似文献
16.
提出一种基于Gabor小波与Memetic算法的人脸识别方法MA-Gabor(Memetic Algorthm-Gbor).算法使用一组特定的Gabor小波滤波器对人脸图像重要区域进行针对性的特征提取运算,可在较短处理时间内获得更具区分能力的识别数据.为提升识别性能,MA-Gabor引入Memetic算法用于Gaor小波滤波器组的优化设计.实验结果表明,Memetic算法可获得比传统优化方法更佳的设计效果.通过将优化设计的Gabor小波滤波器组用于人脸图像的特征提取,MA-Gabor算法可取得比现有人脸识别方法更高的识别率. 相似文献
17.
基于 Gabor小波变换的 ICA 人脸识别算法研究 总被引:1,自引:0,他引:1
为了提高较少训练样本下的人脸识别率,提出了一种改进的人脸识别算法。基于Gabor小波可以良好地表征人脸局部纹理特征这一优点,利用幅值和相位信息相结合来描述图像,通过ICA方法提取独立分量,采用最近邻分类器对该特征进行分类,在ORL人脸数据库上进行了大量实验。结果表明该算法具有很高的识别率,尤其是在训练样本数量较少的情况下,识别率仍保持在90%以上。 相似文献
18.
针对目前大多数人脸识别算法参数多、计算量大,难以部署到移动端和嵌入式设备中的问题,提出了一种基于改进MobileFaceNet的人脸识别方法。通过对MobileFaceNet模型结构的调整,将bottleneck模块优化为sandglass模块,改良深度卷积和逐点卷积的相对位置,适当增大sandglass模块的输出通道数,从而减少特征压缩时的信息丢失,增强人脸空间特征的提取。实验结果表明:改进后的方法在LFW测试数据集上准确率达99.15%,模型大小和计算量分别仅为原算法的61%和45%,验证了所提方法的有效性。 相似文献
19.
基于Gabor小波在图像表征方面的优越性,阐述了将Gabor小波和主分量分析(PCA)相结合用于人脸识别的方案。对人脸图像进行Gabor小波变换,通过PCA(主分量分析)降维后,计算特征点之间的距离,最后进行人脸识别。 相似文献
20.
针对非线性非平稳信号的去噪问题,提出一种基于主成分分析(PCA)的经验模态分解(EMD)消噪方法.该方法根据EMD的分解特性,利用PCA对噪声信号经EMD分解后的内蕴模态函数(IMF)进行去噪处理:首先利用"3σ法则"对第一层IMF进行细节信息提取,并估计每层IMF中所含噪声的能量;然后对IMF进行PCA变换,根据IMF中所含噪声的能量选择合适数目的主成分分量进行重构,以去除IMF中的噪声.为验证本文方法的有效性,进行了数字仿真与实例应用实验.实验结果均表明,所提方法的消噪效果整体上优于Bayesian小波阈值消噪方法和基于模态单元的EMD阈值消噪方法,是一种有效的信号消噪新方法. 相似文献