首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Construction solid waste (CSW), an inescapable by-product of the construction and demolition process, was used as main substrate in a four-stage vertical subsurface flow constructed wetland system to improve phosphorus P removal from domestic wastewater. A 'tidal flow' operation was also employed in the treatment system. Under a hydraulic loading rate (HLR) of 0.76 m3/m2 d for 1st and 3rd stage and HLR of 0.04 m3/m2 d for 2nd and 4th stage of the constructed wetland system respectively and tidal flow operation strategy, average removal efficiencies of 99.4% for P, 95.4% for ammoniacal-nitrogen, 56.5% for total nitrogen and 84.5% for total chemical oxygen demand were achieved during the operation period. The CSW-based constructed wetland system presents excellent P removal performance. The adoption of tidal flow strategy creates the aerobic/anoxic condition intermittently in the treatment system. This can achieve better oxygen transfer and hence lead to more complete nitrification and organic matter removal and enhanced denitrification. Overall, the CSW-based tidal flow constructed wetland system holds great promise for enabling high rate removal of P, ammoniacal-nitrogen and organic matter from domestic wastewater, and transforms CSW from a waste into a useful material.  相似文献   

2.
两种复合垂直流人工湿地污水处理对比研究   总被引:1,自引:0,他引:1  
构建下行流-上行流、下行流-下行流两套复合人工湿地处理生活污水,考察不同运行方式下两套湿地系统污染物净化效果。结果表明,下行流-上行流复合系统适合在较低水力负荷[0.6m3/(m^2.d)]下运行,系统连续进水5天的出水效果很好,COD、TP、氨氮、TN的去除率分别为75%-95%、65%-85%、45%-80%、45%-80%。下行流-下行流复合系统耐水力负荷冲击能力强,适合在高水力负荷[1.2m3/(m^2.d)]下运行,COD、TP、氨氮、TN的去除率分别为70%-95%、40%-85%、50%-90%、50%-80%;其水流方式较下行流-上行流复合系统水流方式更利于复氧,有利于高水力负荷下COD、氨氮的降解。研究成果为实际中人工湿地处理生活污水的运行操作提供了依据和参考。  相似文献   

3.
A three-stage constructed wetland for leachate treatment was monitored on a landfill at a pilot scale. The plant had been designed to achieve at least 75% nitrogen removal. NH4-N input concentration was 240 (median) up to 290 mgl(-1) and COD concentration was 455 to 511 mgl(-1), respectively. A 14 m2 vertical flow sand filter plus a 14 m2 horizontal flow sand filter followed by a 3.3 m2 vertical flow sand filter was chosen. Acetic acid was added to the horizontal flow system for denitrification. The results showed a very stable nitrification rate within the vertical flow system of 94% (median) at NH4-N loading rates of about 10 (median) up to 17 gm(-2)d(-1). Denitrification was mainly dependent on the dosing of acetic acid and could reach a maximum of 98%. One interesting effect was the production of nitrite in the horizontal flow sand filter. This could efficiently be eliminated by the subsequent vertical flow sand filter. The chosen concept proved to be very effective for nitrogen removal. In combination with a final activated carbon filter the COD effluent concentrations could be easily and safely controlled. The design of denitrification reed beds showed a further potential for optimization.  相似文献   

4.
A new type of hybrid constructed wetland (CW), consisting of both vertical-baffled flow wetland (VBFW) and horizontal subsurface flow wetland (HSFW), has been deployed in Southern China to naturally accelerate the removal of organic matter and nitrogen. The hybrid CW system is characterised by a combination of continuous baffled flow vertical wetland and 'S' pattern horizontal subsurface flow wetland with natural aeration ditches to increase the concentration of dissolved oxygen in the HSFW bed. An internal circulatory system from the HSFW effluent back to the VBFW may optionally be operated to enhance the biological denitrification effect. Cyperus alternifolius is the main macrophyte in the wetland bed. The performance of the hybrid CW was studied with a pilot-scale system and three full-scale systems for municipal sewage treatment in Southern China. The results suggest that this new hybrid CW can achieve removal efficiencies of chemical oxygen demand, suspended solids, ammonia nitrogen, total nitrogen, and total phosphorus of better than 83.6, 95.0, 71.7, 64.5 and 68.1% respectively, with a specific wetland bed area of 0.70-0.93 m(2) PE(-1). The mean effluent concentrations of these parameters would meet the regulatory discharge limits for wastewater treatment systems (GB18918, 2002) and reuse in the context of agricultural irrigation solutions in China.  相似文献   

5.
In this paper the nitrogen elimination rates of different constructed wetland (CW) designs reported in literature are compared with those obtained for outdoor and indoor 2-stage vertical flow (VF) systems. The outdoor system is located about 150 km west of Vienna. Both stages are planted with Phragmites australis and the system has been operated for 4 years continuously. During this period the average value of the nitrogen elimination rate was 3.30 g N m(-2) d(-1). The indoor system comprises three parallel operated 2-stage VF systems and is located in the technical lab hall at BOKU University. The design of the indoor system resembles the outdoor system. However, there are a few differences: (1) the indoor systems are not planted, and (2) different filter media have been used for the main layer of the first stages. With the indoor system the highest nitrogen elimination rate achieved was 2.24 g N m(-2) d(-1) for the system with zeolite and impounded drainage layer. Similar results have been found in France for treating raw wastewater with VF and horizontal flow (HF) beds in series with nitrogen elimination rates of 1.89 and 2.82 g N m(-2) d(-1) for differently designed HF beds. The highest nitrogen elimination rates of 15.9 g N m(-2) d(-1) reported were for pilot-scale VF CWs treating high-strength synthetic wastewater (total nitrogen of 305 mg L(-1) in the influent) in Thailand. It has been shown that the outdoor two-stage VF CW system has one of the highest nitrogen elimination rates of CWs treating domestic wastewater.  相似文献   

6.
This research project aimed to determine the technologically feasible and applicable wastewater treatment systems which will be constructed to solve environmental problems caused by small communities in Turkey. Pilot-scale treatment of a small community's wastewater was performed over a period of more than 2 years in order to show applicability of these systems. The present study involves removal of organic matter and suspended solids in serially operated horizontal (HFCW) and vertical (VFCW) sub-surface flow constructed wetlands. The pilot-scale wetland was constructed downstream of anaerobic reactors at the campus of TUBITAK-MRC. Anaerobically pretreated wastewater was introduced into this hybrid two-stage sub-surface flow wetland system (TSCW). Wastewater was first introduced into the horizontal sub-surface flow system and then the vertical flow system before being discharged. Recirculation of the effluent was tested in the system. When the recirculation ratio was 100%, average removal efficiencies for TSCW were 91 +/- 4% for COD, 83 +/- 10% for BOD and 96 +/- 3% for suspended solids with average effluent concentrations of 9 +/- 5 mg/L COD, 6 +/- 3 mg/L BOD and 1 mg/L for suspended solids. Comparing non-recirculation and recirculation periods, the lowest effluent concentrations were obtained with a 100% recirculation ratio. The effluent concentrations met the Turkish regulations for discharge limits of COD, BOD and TSS in each case. The study showed that a hybrid constructed wetland system with recirculation is a very effective method of obtaining very low effluent organic matter and suspended solids concentrations downstream of anaerobic pretreatment of domestic wastewaters in small communities.  相似文献   

7.
A pilot scale treatment system was established in 2002 at the Laflèche Landfill in Eastern Ontario, Canada. The system consists of a series of treatment steps: a stabilisation basin (10,000 m3), a woodland peat trickling filter (5,200 m2), a subsurface flow constructed wetland planted in Phragmites sp. (2,600 m2), a surface flow constructed wetland planted in Typha sp. (3,600 m2) and a polishing pond (3,600 m2). The system operates from May to December with leachate being recycled within the landfill during the winter months. Hydraulic loading was increased three-fold over four operating seasons with nitrogen and organic mass loading increasing six-fold. Excellent removal efficiencies were observed with 93% BOD5, 90% TKN and 97% NH4-N removed under the highest loading conditions. Almost complete denitrification was observed throughout the treatment system with NO3-N concentrations never exceeding 5mg L(-1). The peat filter reached treatment capacity at a hydraulic loading of 4cm d(-1) and organic loading rate of 42 kg BOD ha(-1) d(-1), which is consistent with design criteria for vertical flow wetland systems and intermittent sand filters, The first order plug flow kinetic model was effective at describing TKN and ammonium removal in the SSF and FWS wetlands when background concentrations were taken into account. Ammonium removal k-values were consistent with the literature at 52.6 and 57.7 yr(-1) for the SSF and FWS wetlands, respectively, while TKN k-values at 6.9 and 7.7 yr(-1) were almost an order of magnitude lower than literature values, suggesting that leachate TKN could contain refractory organics not found in domestic wastewater.  相似文献   

8.
利用芦苇和砾石构建太阳能曝气人工垂直潜流湿地处理生活污水。设定水力负荷400 mm/d,气水比10∶1,当进水氨氮(NH4-N)、总氮(TN)、溶解性反应磷(SRP)和总磷(TP)平均浓度为5.14,7.56,0.40,0.53 mg/L时,引入太阳能曝气后,各自的平均去除率分别提高24.8%,9.4%,15.7%和11.5%。随着气温下降和进水浓度降低,湿地微生物脱氮除磷能力下降,曝气对改善生活污水氮磷去除作用不显著。对试验系统而言,太阳能曝气湿地基本建设费用是无曝气湿地的2.85倍;但以20 a运行为基础折算出的污水处理费比无曝气湿地仅高0.02元/m3。综上,从污染去除性能和污水长期处理费用来看,太阳能曝气湿地在生活污水处理方面具有较好的技术经济优势。  相似文献   

9.
The return flows of reject water from sewage sludge dewatering alter the activated sludge process in a conventional WWTP and increase TN concentration in the final effluent from WWTP. The objective of the investigation carried out was to consider the application of multistage treatment wetland (MTW) for the treatment of reject water from sewage sludge dewatering in a centrifuge (RWC). This paper aims to present the design and performance of each stage of the treatment as well as the efficiency of total MTW. The full scale pilot plant for RWC, consisting of two vertical flow beds (SS VF) working in series, followed by an horizontal flow bed (SS HF), was built in 2008. The applied configuration ensured a very high removal efficiency of principal pollutant (COD - 76.0% and NH4+-N - 93.6%). In the investigated facilities, the SS VF beds ensured an effective removal of nitrogen compounds, especially NH4+-N, whereas the decomposition of hardly degradable Org-N and COD took place in SS HF. This research illustrates that the MTW could be successfully applied for the treatment of RWC.  相似文献   

10.
Data from 18 sampling wells in Kodij?rve horizontal subsurface flow (HSSF) constructed wetland (CW) (South Estonia) is presented and differences in purification efficiencies inside the HSSF CW are calculated. Temporarily anaerobic conditions in the Kodij?rve HSSF system did not allow efficient removal of BOD7, NH4-N, Ntot and Ptot. In 2002 a vertical subsurface flow filter was constructed to enhance aeration. The design of the system was based simply on the oxygen demand of the wastewater and on the aeration potential of vertical flow wetlands. The vertical flow system has shown satisfactory results. The purification efficiency of BOD7 in the Kodij?rve CW has improved significantly and there has been a slight increase in purification efficiencies of NH4-N and Ntot. On the ohther hand, the removal efficiency of Ptot has decreased significantly. Although, the mass loading rates have increased, mass removal rates of all four parameters have improved significantly. Nevertheless, optimization of the constructed wetland system is essential in order to meet effluent standards during wintertime.  相似文献   

11.
用氧化塘—浮石床湿地系统处理暖寒季低污染河水   总被引:1,自引:0,他引:1       下载免费PDF全文
在滇池流域构建氧化塘-浮石床湿地复合系统对暖季与寒季的城市低污染河水开展了净化效能研究。结果表明:该系统可通过小幅调节流量来有效净化暖季与寒季低污染河水。塘与湿地的水力负荷分别为0.22、0.37m3/(m2.d)时系统对暖季低污染河水具有较高的处理效率,各污染物的平均去除率分别为CODCr75%、TP 93%、TN 64%、NH4+-N 87%。塘与湿地的水力负荷分别为0.17、0.29 m3/(m2.d)时系统对寒季低污染河水具有较优的处理效果:各污染物的平均去除率分别为CODCr72%、TP 89%、TN 53%、NH4+-N 73%。系统出水均符合GB18918-2002的一级A排放标准。系统在暖季对低污染河水中污染物的去除速率明显高于寒季。  相似文献   

12.
Constructed wetlands (CWs) use the same processes that occur in natural wetlands to improve water quality and are used worldwide to treat different qualities of water. This paper shows the results of an Austrian research project having the main goals to optimize vertical flow beds in terms of surface area requirement and nutrient removal, respectively. It could be shown that a subsurface vertical flow constructed wetland (SSVFCW) operated with an organic load of 20 g COD x m(-2) x d(-1) (corresponding to a specific surface area demand of 4 m2 per person) can fulfil the requirements of the Austrian standard regarding effluent concentrations and removal efficiencies. During the warmer months (May - October), when the temperature of the effluent is higher than 12 degrees C, the specific surface area might be further reduced. Even 2 m2 per person have been proven to be adequate. Enhanced nitrogen removal of 58% could be achieved with a two-stage system (first stage: grain size for main layer 1-4 mm, saturated drainage layer; and second stage: grain size for main layer 0.06-4 mm, free drainage) that was operated with an organic load of 80 g COD x m(-2) x d(-1) for the first stage (1 m2 per person), i.e. 40 g COD x m(-2) x d(-1) for the two-stage system (2 m2 per person). Although the two-stage system was operated with higher organic loads a higher effluent quality compared to a single-stage SSVFCW (grain size for main layer 0.06-4 mm, free drainage, organic load 20 g COD x m(-2) x d(-1)) could be reached.  相似文献   

13.
Nitrogen removal performance and the ammonia-oxidising bacterial (AOB) community were assessed in the batch loaded 1.3 ha saturated surface vertical flow wetland at CSBP Ltd, a fertiliser and chemical manufacturer located in Kwinana, Western Australia. From September 2008 to October 2009 water quality was monitored and sediment samples collected for bacterial analyses. During the period of study the wetland received an average inflow of 1,109 m3/day with NH3-N = 40 mg/L and NO3-N = 23 mg/L. Effluent NH3-N and NO3-N were on average 31 and 25 mg/L, respectively. The overall NH3-N removal rate for the period was 1.2 g/m2/day indicating the nitrifying capacity of the wetland. The structure of the AOB community was analysed using group specific primers for the ammonia monooxygenase gene (amoA) by terminal restriction fragment length polymorphism and by clone libraries to identify key members. The majority of sequences obtained were most similar to Nitrosomonas sp. while Nitrosospira sp. was less frequent. Another two vertical flow wetlands, 0.8 ha each, were commissioned at CSBP in July 2009, since then the wetland in this study has received nitrified effluent from these two new cells.  相似文献   

14.
A study was conducted to evaluate the nutrient removal capability of an existing and successfully operated overland flow and wetland wastewater treatment system following a waste stabilization pond. Seasonal temperature effects on performance were also investigated. The treatment system studied consists of a two-cell waste stabilization pond followed by an overland flow system and a wetland system. The influent and effluent samples were analyzed for BOD5, suspended solids (SS), pH, temperature, ammonia nitrogen, nitrate nitrogen, and total phosphorus. The results of the study indicate that the combined pond, overland flow and wetland system provided excellent treatment of municipal wastewater. The overall average BOD5 removal by the entire treatment system was about 90.0% and the overall average suspended solids removal was about 93.4%. The ammonia nitrogen and total phosphorus removal efficiencies of the entire treatment system were 90.7% and 84.2%, respectively.  相似文献   

15.
By using a two-stage constructed wetland (CW) system operated with an organic load of 40 gCOD.m(-2).d(-1) (2 m2 per person equivalent) average nitrogen removal efficiencies of about 50% and average nitrogen elimination rates of 980 g N.m(-2).yr(-1) could be achieved. Two vertical flow beds with intermittent loading have been operated in series. The first stage uses sand with a grain size of 2-3.2 mm for the main layer and has a drainage layer that is impounded; the second stage sand with a grain size of 0.06-4 mm and a drainage layer with free drainage. The high nitrogen removal can be achieved without recirculation thus it is possible to operate the two-stage CW system without energy input. The paper shows performance data for the two-stage CW system regarding removal of organic matter and nitrogen for the two year operating period of the system. Additionally, its efficiency is compared with the efficiency of a single-stage vertical flow CW system designed and operated according to the Austrian design standards with 4 m2 per person equivalent. The comparison shows that a higher effluent quality could be reached with the two-stage system although the two-stage CW system is operated with the double organic load or half the specific surface area requirement, respectively. Another advantage is that the specific investment costs of the two-stage CW system amount to 1,200 EUR per person (without mechanical pre-treatment) and are only about 60% of the specific investment costs of the singe-stage CW system.  相似文献   

16.
Wastewater from seafood industry contains high concentrations of organic matter, nitrogen compounds, and solid matter. Constructed wetland can be used as tertiary treatment and for nutrient recycling. This research studied the performance of nitrogen and suspended solids removal efficiency of a constructed wetland treating wastewater from a seafood-processing factory located at Songkhla, southern Thailand. The existing constructed wetland has dimensions of 85 m, 352 m and 1.5 m in width, length and depth respectively, with an area of about 29,920 m2. The water depth of 0.30 m is maintained in operation with plantation of cattails (Typha augustifolia). Flow rate of influent ranged between 500-4,660 m3/d. Average hydraulic retention time in the constructed wetland was about 4.8 days. Influent and effluent from the constructed wetland were collected once a week and analyzed for pH, temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD5), Suspended solid (SS), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3-N), organic nitrogen (Org-N), nitrate (NO3-N), and nitrite (NO2-N). The average removal efficiencies of BOD5, SS, TKN, NH3-N, and Org-N were 84%, 94%, 49%, 52% and 82%, respectively. It was found that the constructed wetland acting as a tertiary treatment process provided additional removal of BOD5, SS and TKN from wastewater from the seafood industry.  相似文献   

17.
A headspace solid-phase microextraction (HS-SPME) preconcentration method was applied to the analysis of some of the major odorous compounds occurring in wastewater using GC/MS or GC/NPD detection. The detection limit for volatile amines, volatile fatty acids, and volatile alkylsulphides ranged from 3 to 100, 2 to 150, and 0.0006 to 0.035 microg/L, respectively. The SPME method was used to examine the fate of odorous compounds in the subsurface flow constructed wetlands (SFCW) operated under different hydraulic loading rate (HLR), bed aspect ratio, and granular medium size. Among the experimental conditions evaluated in the SFCW beds, HLR was found to be the most important factor influencing the evolution of the studied compounds. There were also significant differences among bed types in the behaviour of ammonia (NH3), acetic acid (Ac), isovaleric acid (IsoA), propionic acid (PrA), and dimethylsulphide. Aspect ratio and medium granular size were minor factors influencing SFCW performance. The major odour compounds by mass in the effluent of SFCW with different operational conditions were NH3 and Ac. Further removal of these two compounds is considered as very important from the viewpoint of chemical composition. On the other hand, Relative Odour Intensity (ROI: ratio between the absolute concentration to the odour threshold concentration) suggested that PrA and IsoA were the two major compounds responsible for odour intensity. Thus, further removal of these two compounds is viewed as very important for the effluent deodorization, especially for PrA. From our results, this compound appears to be produced by processes occurring in the SFCW.  相似文献   

18.
A multi-stage municipal wastewater treatment system is proposed to comply with Mexican standards for discharge into receiving water bodies. The system is located in Santa Fe de la Laguna, Mexico, an area with a temperate climate. It was designed for 2,700 people equivalent (259.2 m3/d) and consists of a preliminary treatment, a septic tank as well as two modules operating in parallel, each consisting of a horizontal subsurface-flow wetland, a maturation pond and a vertical flow polishing wetland. After two years of operation, on-site research was performed. An efficient biochemical oxygen demand (BOD5) (94-98%), chemical oxygen demand (91-93%), total suspended solids (93-97%), total Kjeldahl nitrogen (56-88%) and fecal coliform (4-5 logs) removal was obtained. Significant phosphorus removal was not accomplished in this study (25-52%). Evapotranspiration was measured in different treatment units. This study demonstrates that during the dry season wastewater treatment by this multi-stage system cannot comply with the limits established by Mexican standards for receiving water bodies type 'C'. However, it has demonstrated the system's potential for less restrictive uses such as agricultural irrigation, recreation and provides the opportunity for wastewater treatment in rural areas without electric energy.  相似文献   

19.
A gravel-based tidal flow reed bed system was operated with three different strategies in order to investigate its optimal performance for the treatment of a high strength agricultural wastewater. According to the three strategies, individual reed beds were saturated and unsaturated with the wastewater for different periods while reasonably stable hydraulic and organic loadings were maintained. Experimental results demonstrated that the system produced the highest pollutant removal efficiencies with a relatively short saturated period and long unsaturated period, highlighting the importance of oxygen transfer into reed bed matrices during the treatment. Significant removals of some major organic and inorganic pollutants were achieved under all three operational conditions. Nitrification was not the major route of ammoniacal-nitrogen removal when the system was under high organic loading. Due to the filtration of suspended solids and the accumulation of biomass, gradual clogging of the reed bed matrices took place, which caused concerns over the long-term efficiency of the tidal flow system.  相似文献   

20.
Enhancing the treatment efficiency of livestock wastewater by effluent recirculation is investigated in a pilot-scale vertical-flow constructed wetland. The wetland system is composed of downflow and upflow stages, on which narrow-leaf Phragmites communis and common reed Phragmites typhia are planted, respectively; each stage has a dimension of 4 m(2) (2 m x 2 m). Wastewater from the facultative pond is fed into the system intermittently at a flow rate of 0.4 m(3)/d. Recirculation rates of 0, 25%, 50%0, 100% and 150% are adopted to evaluate the effect of the recirculation rate on pollutants removal. This shows that with effluent recirculation the average removal efficiencies of NH4-N, BOD5 and SS obviously increase to 61.7%, 81.3%, and 77.1%, respectively, in comparison with the values of 35.6%o, 50.2%, and 49.3% without effluent recirculation. But the improvement of TP removal is slight, only from 42.3% to 48.9%. The variations of NH4-N, DO and oxidation-reduction potential (ORP) of inflow and outflow reveal that the adoption of effluent recirculation is beneficial to the formation of oxide environment in wetland. The exponential relationships with excellent correlation coefficients (R(2) > 0.93) are found between the removal rates of NH4-N and BOD5 and the recirculation rates. With recirculation the pH value of the outflow decreases as the alkalinity is consumed by the gradually enhanced nitrification process. When recirculation rate is kept constant at 100%, the ambient temperature appears to affect NH4-N removal, but does not have significant influence on BOD5 removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号