首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了解决纯电动汽车电池剩余电量估算难题,采用粒子群优化神经网络方法,用于BP(Back Propagation,BP)神经网络权值和阈值优化,并把优化后的神经网络用于荷电状态(SOC)离散估算.以100 Ah LiFePO4电池作为实验对象采集实验数据,将温度、充放电倍率和充放电电压作为PSO-BP(Particle Swarm Optimization,PSO)神经网络输入特征向量,将电池SOC作为输出向量进行网络学习和训练,用训练好的网络对不同充放电倍率下SOC进行离散点预测,采用插值估算实现实时预测.实验结果表明,PSO-BP算法对SOC值为20%~ 80%区间估算准确,能够满足电动汽车正常运行的SOC估算要求.  相似文献   

2.
锂离子电池荷电状态(State of Charge,SOC)直接影响着锂离子电池使用性能和效率。为了实现准确的SOC在线预测,提出一种粒子群优化最小二乘支持向量机软测量方法。该方法使用最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)建立非线性系统模型,以锂离子电池工作电压、电流为输入量,电池SOC为输出量。建立软测量模型时,LSSVM正则化参数λ和径向基核宽度μ直接影响着模型的准确度,采用粒子群算法(Particle Swarm Optimization,PSO)对这两个关键参数进行优化。用型号为BTS6050C4的NBT电池测试系统进行样本数据采集,通过MATLAB仿真软件进行模型训练并校正。实验和仿真结果表明采用PSO-LSSVM优化算法精确度高、易实现,且在正常和过充工作环境下均可有效预测锂离子电池SOC。  相似文献   

3.
潘锦业  王苗苗  阚威  高永峰 《电气技术》2022,23(4):25-30,36
锂离子电池是电动汽车、无人机及电力电子设备的储能系统组件,对其进行准确的荷电状态(SOC)估计对于正确决策、安全控制和维护具有重要意义.针对锂离子电池SOC估计问题,本文采用长短期记忆(LSTM)神经网络搭建锂离子电池SOC估计模型,将电池电压、电流、温度作为输入,建立多层LSTM预测模型,采用Adam优化算法与Dro...  相似文献   

4.
韩伟  王帅  张筱辰  李义婷  陈翁祥 《电源技术》2021,45(3):362-365,377
电池健康状态(state of health,SOH)预测是电池故障诊断与健康管理的重要组成部分,准确地预测电池健康状态至关重要.支持向量回归方法因具有良好的回归能力而被作为预测电池剩余使用寿命的首选数据驱动方法之一.核函数将样本从低维空间映射到高维空间,以便进行精确分类,参数选择决定核函数的映射能力,训练集的大小和分布也会影响支持向量回归(SVR)的回归能力.将锂离子电池数据分为前期、中期和后期训练数据.采用遗传算法(GA)和粒子群算法(PSO)对四个核函数的参数进行了优化.实验结果对比表明,采用径向基函数(RBF)的GA-SVR和PSO-SVR可以较准确地预测锂离子电池的剩余使用寿命.  相似文献   

5.
针对BP神经网络算法对电动汽车锂离子电池荷电状态(SOC)估算的缺陷,提出粒子群(PSO)优化BP神经网络的方法,采用温度、电压、电流、充放电倍率作为PSO-BP神经网络的输入向量,以SOC作为输出向量,进行网络学习和训练,并不断进行神经网络权值、阈值的调整优化。在Matlab中进行仿真验证,实验结果表明BP神经网络算法和PSO-BP神经网络算法均可以使误差减小,但是使用PSO-BP神经网络算法估算SOC效果更优、误差更小、收敛性更佳,可将误差减小到4%以内。  相似文献   

6.
锂离子电池凭借其优越的性能被广泛用于纯电动汽车及大型电气系统。然而,随着锂离子电池循环充放电,电池性能大幅度衰退,会间接导致用电系统的性能衰退或发生故障。因此,准确预测锂离子电池剩余有效寿命(RUL),能够保障电池安全可靠运行。为了提高锂离子电池RUL的预测精度,提出了一种基于改进粒子群算法(IPSO)回声状态网络(ESN)的锂离子电池RUL预测方法,实现在线准确预测锂离子电池RUL。首先,通过遗传算法(GA)的交叉和变异操作优化PSO,提高粒子局部与全局寻优能力。然后通过GA-PSO对ESN网络参数进行优化,建立退化预测模型,利用NASA公开的锂离子电池实验数据进行仿真实验。结果表明,在相同数据集条件下,与改进粒子群算法和门控循环单元(IPSO-GRU)神经网络、遗传算法的极端学习机(GA-ELM)、非线性自回归(NARX)动态神经网络、改进蚁狮优化算法支持向量回归(IALO-SVR)、间接健康指标与ESN的预测方法相比,GA-PSO-ESN有更高的预测精度、稳定性和泛化能力,表明了该方法的有效性。  相似文献   

7.
对锂离子电池荷电状态(SOC)进行准确估算是保证电池管理系统安全稳定运行的关键。常用的安时积分法存在累积误差,卡尔曼滤波算法需要建立精确的电池模型,神经网络法不依赖具体的锂电池模型,能够反映锂电池的非线性关系,因而受到广泛关注,然而传统神经网络估算SOC训练时间长、精度低。针对以往电池SOC估算精度低等问题,文中提出粒子群(PSO)优化极限学习机(ELM)神经网络的方法。以电池电压、电流和温度作为PSO-ELM模型的输入向量,以SOC作为输出向量。将实验获得的数据导入模型进行训练和测试,采用PSO对ELM随机给定的输入权值和隐含层阈值进行寻优。仿真结果表明,与BP神经网络的预测结果相比,文中估算SOC的方法具有更高的精度。  相似文献   

8.
从锂离子电池模型的研究与优化入手,以自主设计的电池SOC仿真系统模型和硬件实验平台为基础,分析锂离子电池SOC预估算法中的粗差影响因素,建立一种新型基于抗差无迹Kalman滤波(UKF)的锂离子电池SOC预估方法.该方法将开路-AH法与抗差UKF估计理论相结合,克服传统估算方法无法消除累积误差的缺点.对照实验结果表明,新算法能够提高动力储能锂离子电池的SOC量测过程中的预估精度,对于促进动力储能锂离子电池的推广,提高动力储能锂离子电池组的能量储存能力、利用率和循环寿命有着重要的科学意义.  相似文献   

9.
锂离子电池因其能量密度大、转换效率高以及反应快速等特点,已逐渐在大型储能系统中得到应用。为有效获知锂离子电池的荷电状态(SOC),在传统方法基础上,将开路电压法和安时积分法相结合,研究某单体容量为20 A·h锂电池的充放电特性,提出了一类兼具离线和在线修正能力的高精度SOC估算算法,为储能系统中的电池管理策略提供支持。  相似文献   

10.
风储联合发电系统电池荷电状态和功率偏差控制策略   总被引:2,自引:0,他引:2  
提出了一种新型的基于风电功率预测偏差和电池荷电状态(SOC)反馈的储能系统控制策略,通过预测结果计算风电功率的变化偏差,得出完全补偿波动所需的储能系统充放电功率,引入补偿系数联合求解获得储能系统的充放电控制指令。同时,建立了补偿系数的动态优化模型,包括长时间尺度下基于输出功率波动和电池容量变化指标的基准补偿系数寻优模型,短时间尺度下基于电池SOC指标和充放电状态的补偿系数快速修正模型。算法采用的最优求解和SOC指标具有广泛的适应性,便于推广不同容量储能系统在风电功率平滑中的应用,可以兼顾储能电池的寿命和输出功率的平滑性。算例结合风电场的功率实测数据,进行储能系统配置仿真,验证了该控制策略能够最大程度发挥储能系统能力,在维持电池能量稳定前提下,平抑风电场输出功率的波动。  相似文献   

11.
传统的无迹卡尔曼滤波(UKF)和粒子滤波(PF)算法估计动力锂离子电池的荷电状态(SOC)时,常会出现电池模型参数不准确或粒子退化等问题导致估计精度差甚至系统发散等现象。为解决粒子匮乏和噪声干扰等问题,提出一种改进的估计算法——无迹粒子滤波算法(UPF)以实现SOC的精确估计。运用无迹卡尔曼算法为每个粒子计算均值和协方差,解决粒子滤波技术中粒子退化的问题。通过锂离子电池充放电实验,对等效模型进行辨识,最后在脉冲充放电和UDDS动态工况下对该算法进行测试验证。实验结果证明,基于二阶RC等效电路模型的UPF算法能显著提高SOC估计的实时性和精确性,其SOC估计精度在2%以内,收敛速度在250 s内。  相似文献   

12.
锂离子电池作为重要的储能元件,其荷电状态(SOC)直接影响所在系统的运行状态。为了实现对锂离子电池SOC的精确估算,提出一种基于门控循环单元神经网络(GRU-RNN)和Huber-M估计鲁棒卡尔曼滤波(HKF)融合方法的锂离子电池SOC估算模型。该方法利用Huber-M估计改进卡尔曼滤波器的鲁棒性,并将基于GRU-RNN所估算的锂离子电池SOC值作为改进卡尔曼滤波器的观测量。在两组锂离子电池数据集上分别进行锂离子电池SOC估算实验。实验结果表明,基于GRU-RNN和HKF融合方法的锂离子电池SOC估算模型不仅能够准确地实现锂离子电池SOC估算,而且能够降低测量误差及异常值对估算结果的影响,使锂离子电池SOC估算结果快速且精确收敛。  相似文献   

13.
在电池储能系统的实际工程中,电池组荷电状态(state of charge,SOC)估算精度越来越受重视。电池组容量、运行环境、循环时间和充放电倍率等都将影响电池组的SOC估算精度,采用单一的电池模型和数据模型很难获得准确的SOC。提出了一种基于信息融合技术的锂离子电池SOC估算方法,主要基于开路电压(open circuit voltage,OCV)-SOC曲线进行。根据锂离子电池运行特性,把OCV-SOC曲线空间划分为锂电池稳定运行区间、识别校正区间、过充区间和过放区间,并据此重新定义锂离子电池运行模式。然后根据其运行模式,在不同运行区间内对锂电池的估算模型进行切换和优化。采取基于信息融合的SOC估算方法,不断修正消除估算模型在运行状态下产生的各种误差,得到较为精确的SOC估算值。最后搭建实验平台,以某储能电站的实际储能工况对该算法进行实验验证,结果表明,上述SOC估算算法在实际锂电池储能系统应用中具有较强的可行性和实用性。  相似文献   

14.
随着锂离子电池在储能系统中比例迅速增大,为避免因电池性能退化导致的事故,如何准确预测锂离子电池剩余使用寿命就成为保障储能系统可靠运行的关键。针对锂离子电池剩余使用寿命预测的问题,提出一种改进灰狼优化多核极限学习机(IGWO-MKELM)预测方法。首先从电池充放电过程中提取能够表征电池寿命退化的间接健康因子作为输入量,然后采用改进灰狼算法对多核极限学习机参数进行寻优,建立改进灰狼优化多核极限学习机预测方法,最后使用NASA电池数据集进行仿真实验。结果表明,IGWO-MKELM方法可以更加精确地预测锂离子电池剩余寿命。  相似文献   

15.
罗承东  吕桃林  解晶莹  付诗意  吴磊 《电源技术》2021,45(10):1371-1375
锂离子电池由于其高能量密度和使用寿命长等优点成为储能的首选,锂离子电池系统的安全运行、状态估算、剩余寿命预测都由电池管理系统(BMS)管理,故BMS对电池系统的使用和稳定至关重要.主要关注以动力电池为代表的电池系统,综述了数据驱动方法的各种算法在BMS系统的应用.概述了BMS电模型的电化学模型、等效电路模型、数据驱动模型的特点,热建模的电模型、热模型、热-电耦合、热-电化学耦合模型的应用范畴.介绍了卡尔曼滤波、神经网络、向量机在SOC估计的应用,粒子群算法、HI-DD-AdaBoost.RT(不等式漂移检测自适应增强学习/阈值回归算法)、卡尔曼滤波在SOH估计的应用剩余寿命预测方面,介绍了经验预测、滤波预测、时间序列预测法.  相似文献   

16.
融合多种储能介质优质特性的复合储能将是未来储能技术发展的重要方向。以具备规模化应用可行性的铅酸蓄电池(VRLA)与全钒液流电池(VRB)为例,针对复合储能系统研究了其容量优化配置计算方法。首先,针对复合储能系统介质特性分解平抑功率目标;其次,构建发挥各介质优势且可协调优化的复合系统充放电策略;最后,建立以复合储能系统经济性运行为目标函数的容量优化配置模型,并基于粒子群优化(PSO)算法实现了求解计算。某风电场实际运行数据分析结果表明,经文中方法优化配置的复合储能系统在等效运行成本、平抑效果、充放电次数等方面均得到了优化,验证了该方法的有效性。  相似文献   

17.
王仲旭  张圣渠  刘强 《电池》2021,51(3):221-224
以广州某巴士企业电动公交在实际运行和停车充电状态下的电压、电流和荷电状态(SOC)的数据,分别建立基于支持向量回归机(SVR)的锂离子电池放电和充电的SOC估计模型,并利用网格搜索法(GS)、遗传算法(GA)和粒子群算法(PSO)进行参数优化,对比估计精度和拟合优度.处理放电阶段数据时,基于PSO优化后的SOC估计模型...  相似文献   

18.
基于深度学习的锂离子电池SOC和SOH联合估算   总被引:2,自引:0,他引:2  
锂离子电池常被作为储能元件以实现电能的存储和转化,然而其荷电状态(state of charge,SOC)和健康状态(state of health,SOH)无法被直接测量。为了实现锂离子电池SOC和SOH联合估算,该文分析SOC和SOH之间的关联性,并提出一种基于深度学习的锂离子电池SOC和SOH联合估算方法。该方法能够基于门控循环单元循环神经网络(recurrent neural network with gated recurrent unit,GRU-RNN)和卷积神经网络(convolutional neural network,CNN),利用锂离子电池电压、电流、温度,实现锂离子电池全使用周期内SOC和SOH的同时估算,而且由于将锂离子电池的SOH估算值考虑到SOC估算中,能够消除锂离子电池老化因素对锂离子电池SOC估算造成的负面影响,从而提升SOC估算精度。两个锂离子电池测试数据集上的实验结果表明,提出的估算方法能够在不同温度和不同工况下实现锂离子电池全使用周期SOC和SOH联合估算,且获得较高的精度。  相似文献   

19.
为最大程度提高光伏系统跟踪计划出力能力,基于短期光伏发电预测功率及预测误差的随机性,提出采用机会约束规划的储能系统控制方法。该方法以光储联合出力在调度计划上下限范围内为目标,考虑储能充放电功率与荷电状态(state of charge,SOC)约束条件,并采用基于蒙特卡罗(Monte Carlo)模拟的改进自适应粒子群优化算法(particle swarm optimization algorithm,PSO)进行求解,进而获得日前各时刻储能的充放电功率值。以典型光伏电站出力为例进行仿真,对比分析了固定系数和变化系数情况下光储跟踪计划出力效果与储能情况,结果验证了该控制策略的有效性与灵活性,并为日前储能充放电控制提供了参考方案。  相似文献   

20.
于智斌  田易之 《电池》2023,(2):160-164
针对锂离子电池荷电状态(SOC)和健康状态(SOH)难以直接测量的问题,提出基于多新息的扩展卡尔曼粒子滤波(MIEKPF)与扩展卡尔曼粒子滤波(EKPF)协同估计SOC和SOH。采用EKPF算法在线辨识参数,并估计SOH,将阻容等辨识结果作为输入,弥补估计SOC时应该考虑电池老化影响产生的误差,实现SOH对SOC的修正,提高模型精度。在新欧洲驾驶周期(NEDC)工况下,进行充放电实验,EKPF算法估计SOH的结果符合实际情况。MIEKPF-EKPF算法最终SOC估计的平均误差为0.48%、最大误差为1.97%、均方根误差为0.58%,仿真结果验证了所提方法的可行性和准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号