首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To account for the effect of transverse shear deformation, the p-Ritz method incorporating Reddy’s third-order shear deformation theory has been developed for the vibration analysis of cantilevered, thick, laminated, trapezoidal plates. In the p-Ritz method, a set of uniquely defined polynomial functions, consisting of the product of a two-dimensional function and a basic function, are used as the admissible trial displacement and rotation functions in the Ritz minimization procedure. The energy integral is formulated based on Reddy’s third-order shear deformation theory. From the p-Ritz method, the governing eigenvalue equation is derived which is used to compute the vibration frequency parameters and mode shapes of the laminated plate. Convergence and comparison studies have been presented to demonstrate and verify the accuracy of the results.  相似文献   

2.
A meshless approach based on the reproducing kernel particle method is developed for the flexural, free vibration and buckling analysis of laminated composite plates. In this approach, the first-order shear deformation theory (FSDT) is employed and the displacement shape functions are constructed using the reproducing kernel approximation satisfying the consistency conditions. The essential boundary conditions are enforced by a singular kernel method. Numerical examples involving various boundary conditions are solved to demonstrate the validity of the proposed method. Comparison of results with the exact and other known solutions in the literature suggests that the meshless approach yields an effective solution method for laminated composite plates.  相似文献   

3.
Spline function approximation technique is used to analyze the free vibration of symmetric and anti-symmetric cross-ply plates under shear deformation theory. The equations of motion of the plate are derived using YNS theory. A system of coupled differential equations in terms of displacement and rotational functions are obtained by assuming the solution in a separable form. These functions are approximated using Bickley-type splines of suitable orders. A generalized eigenvalue problem is obtained on applying the process of point collocation with suitable boundary conditions. Parametric studies have been made to investigate the frequency response of the plates with reference to the material properties, number of layers, fiber orientation, side-to-thickness ratio, aspect ratio and relative layer thickness. Some results are compared with existing solution obtained by FEM.  相似文献   

4.
In this paper, a global–local higher order theory has been used to study buckling response of the laminated composite and sandwich plates subjected to thermal/mechanical compressive loads. The present global–local theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces, and the number of unknowns is independent of the layer numbers of the laminate. Based on this higher-order theory, a refined three-noded triangular element satisfying C1 weak-continuity conditions has been also proposed. The present theory not only predicts accurately the buckling response of general laminated composite plates but also calculates the critical buckling loads of the soft-core sandwich plates. However, numerical results show that the global higher-order theories as well as first order theories encounter some difficulties and overestimate the critical buckling loads for the sandwich plates with a soft core.  相似文献   

5.
Effects of shear non-linearity on free vibration of a laminated composite shell of revolution are investigated using a semi-analytical method based on the Reissner–Mindlin shell theory. The coupling between symmetric and anti-symmetric vibration modes of the shell is considered in the shear deformable shell element employed in this study. The Hahn–Tsai non-linearly elastic shear stress–shear strain relation is adopted. Numerical examples are given for laminated composite circular cylindrical and conical shells with various boundary conditions. The numerical results indicate that shear non-linearity may reduce significantly the fundamental frequencies of cross-ply composite shells of revolution.  相似文献   

6.
A dynamic finite element method for free vibration analysis of generally laminated composite beams is introduced on the basis of first-order shear deformation theory. The influences of Poisson effect, couplings among extensional, bending and torsional deformations, shear deformation and rotary inertia are incorporated in the formulation. The dynamic stiffness matrix is formulated based on the exact solutions of the differential equations of motion governing the free vibration of generally laminated composite beam. The effects of Poisson effect, material anisotropy, slender ratio, shear deformation and boundary condition on the natural frequencies of the composite beams are studied in detail by particular carefully selected examples. The numerical results of natural frequencies and mode shapes are presented and, whenever possible, compared to those previously published solutions in order to demonstrate the correctness and accuracy of the present method.  相似文献   

7.
A new hyperbolic shear deformation theory taking into account transverse shear deformation effects is presented for the buckling and free vibration analysis of thick functionally graded sandwich plates. Unlike any other theory, the theory presented gives rise to only four governing equations. Number of unknown functions involved is only four, as against five in case of simple shear deformation theories of Mindlin and Reissner (first shear deformation theory). The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Equations of motion are derived from Hamilton's principle. The closed-form solutions of functionally graded sandwich plates are obtained using the Navier solution. The results obtained for plate with various thickness ratios using the theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories with more number of unknown functions.  相似文献   

8.
The paper presents finite element free vibration and buckling analysis of laminated hat-stiffened shallow and deep shells using arbitrarily oriented stiffener formulation. Modified approach for modelling the curved stiffener is implemented using necessary transformations. A simplified stiffener formulation is presented to accommodate various shapes of stiffener shapes in developing the rigidity matrix for the finite element formulation. Investigation has been carried out on free vibration and buckling analyses of laminated composite stiffened shell structures with laminated open section (rectangular or ‘T’ shaped) and closed section (‘hat’ shaped) stiffeners. Parametric study on the hat-stiffened panels for the free vibration and buckling analyses confirms that the closed section stiffener being torsionally rigid is found to show better performance over open section stiffeners.  相似文献   

9.
The influence of hygrothermal effects on the postbuckling of shear deformable laminated plates subjected to a uniaxial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected by the variation of temperature and moisture, and are based on a micro-mechanical model of a laminate. The governing equations of a laminated plate are based on Reddy's higher-order shear deformation plate theory that includes hygrothermal effects. The initial geometric imperfection of the plate is taken into account. Two cases of the in-plane boundary conditions are considered. A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, antisymmetric angle-ply and symmetric cross-ply laminated plates under different sets of environmental conditions. The influences played by temperature rise, the degree of moisture concentration, the character of in-plane boundary conditions, transverse shear deformation, plate aspect ratio, total number of plies, fiber orientation, fiber volume fraction and initial geometric imperfections are studied.  相似文献   

10.
Free vibration analysis of rectangular plates with internal columns and elastic edge supports is presented using the powerful pb-2 Ritz method. Reddy's third order shear deformation plate theory is employed. The versatile pb-2 Ritz functions defined by the product of a two-dimensional polynomial and a basic function are taken as the admissible functions. Substituting these displacement functions into the energy functional and minimizing the total energy by differentiation, leads to a typical eigenvalue problem, which is solved by a standard eigenvalue solver. Stiffness and mass matrices are numerically integrated over the plate using the Gaussian quadrature. The accuracy and efficiency of the proposed method are demonstrated through several numerical examples by comparison and convergency studies. Many numerical results for reasonable natural frequency parameters of rectangular plates with different combinations of elastic boundary conditions and column supports at any locations are presented, which can be used as a benchmark for future studies in this area.  相似文献   

11.
A general geometrically nonlinear model for thin-walled composite space beams with arbitrary lay-ups under various types of loadings is presented. This model is based on the first-order shear deformable beam theory, and accounts for all the structural coupling coming from both material anisotropy and geometric nonlinearity. The nonlinear governing equations are derived and solved by means of an incremental Newton-Raphson method. A displacement-based one-dimensional finite element model that accounts for the geometric nonlinearity in the von Kármán sense is developed. Numerical results are obtained for thin-walled composite box beams under vertical load to investigate the effects of shear deformation, geometric nonlinearity and fiber orientation on axial-flexural-torsional response.  相似文献   

12.
This study presents a simple formulation for studying the free vibration of shear-deformable antisymmetric cross-ply laminated rectangular plates having translational as well as rotational edge constraints. The aim is to fill the void in the available literature with respect to the free vibration results of antisymmetric cross-ply laminated rectangular plates. The spatial discretization of the resulting mathematical model in five field variables is carried out using the two-dimensional Differential Quadrature Method (DQM). Several combinations of translational and rotational elastic edge constraints are considered. Convergence study with respect to the number of nodes has been carried out and the results are compared with those from past investigations available only for simpler problems. Effects of stiffness parameters, geometrical features, moduli ratio and lamination schemes on the natural frequencies are studied.  相似文献   

13.
The buckling characteristics of sandwich plates having laminated stiff layers are studied for different types of partial edge loadings using a refined plate theory. With this plate theory, the through thickness variation of transverse shear stresses is represented by piecewise parabolic functions where the continuity of these stresses is satisfied at the layer interfaces by taking jumps in the transverse shear strains at the interfaces. The transverse shear stresses free condition at the plate top and bottom surfaces is also satisfied. It is quite interesting to note that this plate model having all these refined features requires unknown parameters only at the reference plane. To have a generality in the present analysis, finite element technique is adopted and it is carried out with newly developed triangular element, as existing finite elements cannot accommodate this plate model. So far, no solution exists in the literature for the problem of sandwich plate subjected to partial edge loading. The present analysis is first validated for the case of an isotropic plate subjected to partial edge compression and then it is extended to analyze sandwich plates. Few results are presented.  相似文献   

14.
The present investigation is concerned with free vibration analysis of laminated composite plates resting on elastic foundation undergoing large amplitude oscillation with random system properties. The lamina material properties and foundation stiffness parameters are modeled as basic random variables for accurate prediction of the system behavior. The basic formulation of the problem is based on higher-order shear displacement theory including rotatory inertia effects and von Karman-type nonlinear strain displacement relations. A C0 finite element is used for descretization of the laminate. A direct iterative method in conjunction with first-order Taylor series based perturbation technique procedure is developed to solve random nonlinear generalized eigenvalue problem. The developed probabilistic procedure is successfully used for the nonlinear free vibration problem with a reasonable accuracy. Typical numerical results (second-order statistics) are obtained for the composite plates resting on Winkler and Pasternak elastic foundations with different support conditions, side-to-thickness ratio, aspect ratio, oscillation amplitude ratio, stacking sequences and foundation parameters for symmetric and anti-symmetric cross-ply and angle-ply laminates. The results are validated with existing available results and independent Monte Carlo simulation.  相似文献   

15.
The spline function technique is used to analyze the vibration of multi-layered circular cylindrical shells with cross-ply walls including first-order shear deformation theory. Both antisymmetric and symmetric cross-ply laminations are considered in this analysis. The governing equilibrium equations are obtained in terms of displacement and rotational functions. A system of coupled ordinary differential equations in terms of displacement and rotational functions are obtained by assuming the solution in a separable form. These functions are approximated by using Bickley-type splines of suitable order to obtain the generalized eigenvalue problem by applying point collocation techniques with appropriate boundary conditions. Parametric studies are performed to analyze the frequency response of the shell with reference to the material properties, number of layers, fiber orientation, thickness to radius ratio, length to radius ratio and circumferential node number. Reasonable agreement is found with existing results obtained by FEM and other methods. Valuable results are presented as graphs and discussed. This paper was recommended for publication in revised form by Associate Editor Maenghyo Cho Dr. K. K. Viswanathan was born in 1962 in Vellore District, India. He received his B.Sc. in Mathematics from University of Madras and M.Sc. in 1992 and Ph.D. in 1999 from Anna University, India. Later he was a Project Associate in Indian Institute of Science, Bangalore. He served as lecturer in Crescent Engg. College and as Asst. Professor in SRM University, India. He did his post doctoral research in Korea for three years. At present he serves as Professor in the Dept. of Naval Architecture, Inha University, Incheon, Korea. His research areas of interest includes vibration of plates, shells and the application of numerical techniques in Engineering problems. Dr. Kyung Su Kim was born in Korea in 1954. He is a professor in Naval Architecture and Ocean Engineering at Inha University, Korea. He obtained his B.Sc. degree in Naval Architecture and Ocean Engineering from Seoul National University, Korea, in 1981. He worked for KR (Korean Register of Shipping) from 1981 to 1983. He obtained M.Sc. degree in Naval Architecture and Ocean Engineering in 1986, and Ph.D. degree in Structural Mechanics in 1991 from Rheinisch — Westfaelische Technische Hoch-schule Aachen, Germany. From 1986 to 1992, he was a Post Doctoral Research Engineer of Engineering Research Institute at Rheinisch — Westfaelische Technische Hochschule Aachen. He was appointed as a professor of Inha University, Korea, in 1994. His major area of study is Impact and Fatigue Fracture. Dr. Jang Hyun Lee was born in Korea in 1969. Currently, he is an Assistant professor of the Department of Naval Architecture and Ocean Engineering at Inha University, Korea. He obtained his B.Sc., M.Sc. and Ph.D. degrees in Naval Architecture and Ocean Engineering from Seoul National University, Korea, in 1993, 1995 and 1999 respectively. From 1999 to 2002, he was a Post Doctoral Research Engineer of Engineering Research Institute at Seoul National University. He joined the Inha University in 2005 after holding the Chief Technology Officer at Xinnos for four years. His research interests include press forming of thick plates and shells, computational welding mechanics and Product Lifecycle Management.  相似文献   

16.
The interlaminar stresses and deflections in a laminated rectangular plate under thermal vibration were determined by using the generalized differential quadrature (GDQ) method involving the effect of shear deformation. The approximate stress and deflection solutions are obtained under the vibration of sinusoidal temperature of thermal load for layer in cross-ply laminate. Numerical results show that the maximum deflection and stresses at center position of laminate increasing with the side-to-thickness ratio a/h* value decreasing, especially in the region a/h*20. The GDQ method provides an efficient method for calculating the interlaminar stresses and deflections in a multi-layered plate of cross-ply laminate subjected to thermal vibration of sinusoidal temperature including shear deformation with a few grid points.  相似文献   

17.
A method for determining modal characteristics (natural frequencies and mode shapes) of symmetrically laminated composite plates restrained by elastic supports at different locations in the interior and on the edges of the plates is presented. The classical lamination theory together with an appropriate set of characteristic functions are used in the Rayleigh-Ritz method to formulate the eigenvalue problem for determining the modal characteristics of the flexibly supported laminated composite plates. Sweep-sine vibration testing of several laminated composite plates flexibly restrained at different locations on the plates is performed to measure their natural frequencies. The close agreement between the experimental and theoretical natural frequencies of the plates has verified the accuracy of the proposed method. The effects of elastic restraint locations on the modal characteristics of flexibly supported laminated composite plates with different lamination arrangements and aspect ratios are studied using the present method. The usefulness of the results obtained for predicting sound radiation behavior of flexibly supported laminated composite plates is discussed.  相似文献   

18.
In this paper, a new numerical solution technique, the differential cubature method, is applied to solve the free vibration problems of arbitrary shaped thick plates. The basic idea of the differential cubature method is to express a linear differential operation such as a continuous function or any order of partial derivative of a multivariable function, as a weighted linear sum of discrete function values chosen within the overall domain of a problem. By using the differential cubature procedure, the governing differential equations and boundary conditions are transformed into sets of linear homogeneous algebraic equations. This is an eigenvalue problem, of which the eigenvalues can be calculated numerically. The subspace iterative method is employed in search of the free vibration frequency parameters. Detailed formulations are presented, and the method is examined here for its suitability for solving the vibration problems of moderately thick plates governed by Mindlin shear deformation theory. The applicability, efficiency and simplicity of the method are demonstrated through solving some example plate vibration problems of different shapes. The numerical accuracy of the method is ascertained by comparing the vibration frequency solutions with those of existing literatures.  相似文献   

19.
An analytical solution to the free vibration of composite beams with two non-overlapping delaminations is presented. The delaminated beam is modeled as seven interconnected Euler-Bernoulli beams using the delaminations as their boundaries. The continuity and the equilibrium conditions are satisfied between adjoining beams. The analysis includes the differential stretching between the delaminated layers and the bending-extension coupling. The results of the present model agree well with the analytical and experimental data reported in the literature. Parametric studies show that the sizes and locations of the delaminations have significant effect on the natural frequencies and mode shapes. These results provide useful information in the study of the free vibration of delaminated composite beams.  相似文献   

20.
This paper presents a numerical analysis of the axisymmetric free vibration of moderately thick annular plates using the differential quadrature method (DQM). The plates are described by Mindlin’s first-order shear-deformation theory. The first five axisymmetric natural frequencies are presented for uniform annular plates, of various radii and thickness ratios, with nine possible combinations of free, clamped and simply supported boundary conditions at the inner and outer edges of the plates. The accuracy of the method is established by comparing the DQM results with some exact and finite element numerical solutions and, therefore, the present DQM results could serve as a benchmark for future reference. The convergence characteristics of the method for thick plate eigenvalue problems are investigated and the versatility and simplicity of the method is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号