首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
TRAP (trp RNA-binding attenuation protein) regulates expression of the tryptophan biosynthetic genes in response to tryptophan in Bacillus subtilis by binding to two sites containing a series of 9 or 11 (G/U)AG triplet repeats that are generally separated by two or three spacer nucleotides. Previous mutagenesis experiments have identified three TRAP residues, Lys-37, Lys-56, and Arg-58 that are essential for RNA binding. The location of these residues on the TRAP oligomer supports the proposal that RNA binds TRAP by encircling the TRAP oligomer. In this work, we show that RNAs containing 11 GAG or UAG repeats separated by CC dinucleotide spacers (((G/U)AGCC)11) form stable structures that inhibit binding to TRAP. This conclusion is based on the effects of temperature and Mg2+ on the affinity of TRAP for RNAs with CC spacers combined with UV hyperchromicity and circular dichroism. Furthermore, introducing the base analogue 7-deazaguanosine in the ((G/U)AGCC)11 RNAs stabilized the TRAP-RNA interaction. This effect was associated with decreased stability of the RNA structure as measured by circular dichroism spectroscopy. The precise nature of the structure of the ((G/U)AGCC)11 RNAs is not known but evidence is presented that it involves noncanonical interactions. We also observed that substitution of Arg-58 with Lys further reduced the ability of TRAP to interact with structured RNAs. Since in vivo function of TRAP may involve binding to structured RNAs, we suggest a potential function for this residue, which is conserved in TRAP from three different bacilli.  相似文献   

2.
3.
The theophylline-binding RNA aptamer contains a 15 nucleotide motif that is required for high-affinity ligand binding. One residue within this RNA motif is only semiconserved and can be an A or C. This residue, C27, was disordered in the previously determined three-dimensional structure of the complex, suggesting that it is dynamic in solution. 13C Relaxation measurements are reported here, demonstrating that C27 is highly dynamic in the otherwise well-ordered RNA-theophylline complex. A synthetic complex with an abasic residue at position 27 was found to exhibit wild-type binding affinity (Kd approximately 0.2 microM), indicating that the base of residue 27 is not directly involved with theophylline binding. Surprisingly, the U27 and G27 RNAs were found to bind theophylline with low affinity (Kd values > 4 microM). NMR spectroscopy on the U27 RNA revealed the presence of an A7-U27 base pair in the free RNA that prevents formation of a critical base-platform structural motif and therefore blocks theophylline binding. Similarly, a protonated A7H+-C27 base pair forms in the absence of theophylline at low pH, which explains the unusual pH dependence of theophylline binding of the C27 RNA aptamer. Thus the weak binding for various nucleotides at position 27 arises not from unfavorable interactions in the RNA-theophylline complex but instead from stable interactions in the free state of the RNA that inhibit theophylline binding.  相似文献   

4.
5.
The function(s) and RNA binding properties of vigilin, a ubiquitous protein with 14 KH domains, remain largely obscure. We recently showed that vigilin is the estrogen-inducible protein in polysome extracts which binds specifically to a segment of the 3' untranslated region (UTR) of estrogen-stabilized vitellogenin mRNA. In order to identify consensus mRNA sequences and structures important in binding of vigilin to RNA, before vigilin was purified, we developed a modified in vitro genetic selection protocol. We subsequently validated our selection procedure, which employed crude polysome extracts, by testing natural and in vitro-selected RNAs with purified recombinant vigilin. Most of the selected up-binding mutants exhibited hypermutation of G residues leading to a largely unstructured, single-stranded region containing multiple conserved (A)nCU and UC(A)n motifs. All eight of the selected down-binding mutants contained a mutation in the sequence (A)nCU. Deletion analysis indicated that approximately 75 nucleotides are required for maximal binding. Using this information, we predicted and subsequently identified a strong vigilin binding site near the 3' end of human dystrophin mRNA. RNA sequences from the 3' UTRs of transferrin receptor and estrogen receptor, which lack strong homology to the selected sequences, did not bind vigilin. These studies describe an aproach to identifying long RNA binding sites and describe sequence and structural requirements for interaction of vigilin with RNAs.  相似文献   

6.
7.
The binding site for tat protein on TAR RNA has been defined in quantitative terms using an extensive series of mutations. The relative dissociation constants for the mutant TAR RNAs were measured using a dual-label competition filter binding assay in which 35S-labelled wild-type TAR RNA (K1) was competed against 3H-labelled mutant TAR RNA (K2). The error in the self-competition experiment was usually less than 10% (e.g. K2/K1 = 1.07 +/- 0.05, n = 19) and the experimental data accurately matched theoretical curves calculated with fitted dissociation constants. Mutations in U23, a critical residue in the U-rich "bulge" sequence, or in either of the two base-pairs immediately above the "bulge", G26.C39 and A27.U38 reduced that affinity by 8- to 20-fold. Significant contributions to tat binding affinity were also made by the base-pairs located immediately below the bulge. For example, mutation of A22.U40 to U.A reduced tat affinity 5-fold, and mutation of G21.C41 to C.G reduced tat affinity 4-fold. The binding of a series of peptides spanning the basic "arginine-rich" sequence of tat was examined using both filter-binding and gel mobility shift assays. Each of the peptides showed significantly reduced affinities for wild-type TAR RNA compared to the tat protein. The ADP-2 (residues 43 to 72), ADP-3 (residues 48 to 72) and ADP-5 (residues 49 to 86) peptides were unable to discriminate between wild-type TAR RNA and TAR RNA mutants with the same fidelity as the tat protein. For example, these peptides showed no more than 3-fold reductions in affinity relative to wild-type TAR RNA for the U23-->C mutation in the bulge, or G26.G39-->C.G mutation in the stem of TAR RNA. By contrast, the ADP-I (residues 37 to 72), ADP-4 (residues 32 to 62) and ADP-6 (residues 32 to 72) peptides, which each carry amino acid residues from the "core" region of the tat protein have binding specificities that more closely resemble the protein. The ADP-4 and ADP-6 peptides showed between 4- and 7-fold reductions in affinity for the U23-->C or G26.C39-->C.G mutations. The ADP-1 peptide most closely resembles the protein in its binding specificity and showed 9-fold and 14-fold reductions in affinity for the two mutants, respectively. Chemical-modification interference assays using diethylpyrocarbonate (DEPC) and ethylnitrosourea (ENU) were also used to compare the binding properties of the tat protein and the tat-derived peptides.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Transactivation of human immunodeficiency virus (HIV) gene expression requires the interaction of Tat protein with the trans-activation responsive region (TAR) RNA, a 59-base stem-loop structure located at the 5'-end of all mRNAs. The TAR RNA contains a six-nucleotide loop and a three-nucleotide pyrimidine bulge which separates two helical stem regions. The trinucleotide bulge is essential for high affinity and specific binding of the Tat protein. Recently, a rhodium complex, Rh(phen)2phi3+, was discovered which promotes RNA cleavage in the open major groove and triply bonded bases [Chow, C. S., et al. (1992) Biochemistry 31, 972-982]. This metal complex does not bind double-helical RNA or unstructured single-stranded regions of RNA. Instead, sites of tertiary interaction which are open in the major groove and accessible to stacking are targeted by the complex through photoactivated cleavage. We have used this rhodium probe to investigate the effect of bulge bases on the major groove opening in TAR RNA. The sites targeted by the rhodium complex have been mapped to single nucleotide resolution on wild-type TAR RNA and on several mutants of the TAR RNA containing different numbers of mismatch bases in the bulge region. A strong cleavage at residues C39 and U40 was observed on the wild-type TAR RNA and in mutant TAR RNA containing two mismatch bases in the bulge. No cleavage at C39 and U40 was observed in a bulgeless and a one-base bulge TAR RNA. By varying the number of mismatch bases, we demonstrated that the trinuclear bulge widens the major groove of TAR RNA to facilitate Tat binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Genes associated with several neurological diseases are characterized by the presence of an abnormally long trinucleotide repeat sequence. By way of example, Huntington's disease (HD), is characterized by selective neuronal degeneration associated with the expansion of a polyglutamine-encoding CAG tract. Normally, this CAG tract is comprised of 11-34 repeats, but in HD it is expanded to > 37 repeats in affected individuals. The mechanism by which CAG repeats cause neuronal degeneration is unknown, but it has been speculated that the expansion primarily causes abnormal protein functioning, which in turn causes HD pathology. Other mechanisms, however, have not been ruled out. Interactions between RNA and RNA-binding proteins have previously been shown to play a role in the expression of several eukaryotic genes. Herein, we report the association of cytoplasmic proteins with normal length and extended CAG repeats, using gel shift and UV crosslinking assays. Cytoplasmic protein extracts from several rat brain regions, including the striatum and cortex, sites of neuronal degeneration in HD, contain a 63-kD RNA-binding protein that specifically interacts with these CAG-repeat sequences. These protein-RNA interactions are dependent on the length of the CAG repeat, with longer repeats binding substantially more protein. Two CAG repeat-binding proteins are present in human cortex and striatum; one comigrates with the rat protein at 63 kD, while the other migrates at 49 kD. These data suggest mechanisms by which RNA-binding proteins may be involved in the pathological course of trinucleotide repeat-associated neurological diseases.  相似文献   

10.
Prohead RNA (pRNA) of the Bacillus subtilis bacteriophage phi29 is needed for in vitro packaging of DNA-gene product 3 (DNA-gp3). Residues 22-84 of the 174-base pRNA bind the portal vertex of the prohead, the site of DNA packaging. To define the nucleotides of pRNA needed for prohead binding and DNA-gp3 packaging and to seek biologically active variants of pRNA, segments of pRNA were randomized to obtain vast repertoires of RNA molecules. RNA aptamers, ligands best suited for prohead binding, were obtained by multiple rounds of in vitro selection. Evolution of pRNA aptamers was followed by a competition binding assay and nucleotide sequencing, and mutants were tested for DNA-gp3 packaging. Aptamers selected following randomization of the E stem and loop and a part of the C-E loop that were active in DNA-gp3 packaging were invariably wild-type. DNA-gp3 packaging activity also required nucleotides G82 and G83 that form base pairs intermolecularly with C47 and C48 to produce a novel hexameric oligomer of pRNA. The only mutant aptamers that retained full DNA-gp3 packaging activity showed changes of the U residues at positions 81, 84, and 85 of the D loop. Thus, the in vitro selections essentially recapitulated the natural evolution of pRNA.  相似文献   

11.
12.
The expansion of trinucleotide repeat sequences is associated with several neurodegenerative diseases. The mechanism of this expansion is unknown but may involve slipped-strand structures where adjacent rather than perfect complementary sequences of a trinucleotide repeat become paired. Here, we have studied the interaction of the human mismatch repair protein MSH2 with slipped-strand structures formed from a triplet repeat sequence in order to address the possible role of MSH2 in trinucleotide expansion. Genomic clones of the myotonic dystrophy locus containing disease-relevant lengths of (CTG)n x (CAG)n triplet repeats were examined. We have constructed two types of slipped-strand structures by annealing complementary strands of DNA containing: (i) equal numbers of trinucleotide repeats (homoduplex slipped structures or S-DNA) or (ii) different numbers of repeats (heteroduplex slipped intermediates or SI-DNA). SI-DNAs having an excess of either CTG or CAG repeats were structurally distinct and could be separated electrophoretically and studied individually. Using a band-shift assay, the MSH2 was shown to bind to both S-DNA and SI-DNA in a structure-specific manner. The affinity of MSH2 increased with the length of the repeat sequence. Furthermore, MSH2 bound preferentially to looped-out CAG repeat sequences, implicating a strand asymmetry in MSH2 recognition. Our results are consistent with the idea that MSH2 may participate in trinucleotide repeat expansion via its role in repair and/or recombination.  相似文献   

13.
14.
15.
A novel human cDNA containing CAG repeats, designated B120, was cloned by PCR amplification. An approximately 300-bp 3' untranslated region in this cDNA was followed by a 3426-bp coding region containing the CAG repeats. A computer search failed to find any significant homology between this cDNA and previously reported genes. The number of CAG trinucleotide repeats appeared to vary from seven to 12 in analyses of genomic DNA from healthy volunteers. An approximately 8-kb band was detected in brain, skeletal muscle and thymus by Northern blot analysis. The deduced amino-acid sequence had a polyglutamine chain encoded by CAG repeats as well as glutamine- and tyrosine-rich repeats, which has also been reported for several RNA binding proteins. We immunized mice with recombinant gene product and established a monoclonal antibody to it. On Western immunoblotting, this antibody detected an approximately 120-kDa protein in human brain tissue. In addition, immunohistochemical staining showed that the cytoplasm of neural cells was stained with this antibody. These findings indicated that B120 is a novel cDNA with a CAG repeat length polymorphism and that its gene product is a cytoplasmic protein with a molecular mass of 120 kDa.  相似文献   

16.
BACKGROUND: Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. RESULTS: The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. CONCLUSIONS: The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.  相似文献   

17.
Kunjin virus (KUN) C is a typical flavivirus core protein which is truncated in vivo to a mature form of 105 residues enriched in lysine and arginine. In order to study the possible association of KUN C with RNA in vitro, we prepared several recombinant C proteins with specific deletions, each fused at the amino-terminus to glutathione-S-transferase (GST) and expressed in E. coli. They were reacted with KUN RNA probes transcribed in vitro from cDNA representing the 5' untranslated region (5' UTR, 93 to 96 nucleotides), the 3' UTR (624 nucleotides), and the 5' UTR plus most of the C coding region (5' core, 440 nucleotides). Fusion protein C107 (incorporating mature C) bound strongly to all KUN RNA probes with apparent specificity, being completely resistant to inhibition by 800 mM NaCl, and to competition by a large excess of tRNA. In reactions with labelled KUN RNA probes putative binding sites were identified in the isolated amino-terminal (32 residues) and carboxy-terminal (26 residues) basic amino acid domains; this binding was strongly competed by unlabelled KUN UTR probes but weakly or not at all by tRNA. These small domains probably acted co-operatively in binding of mature C to KUN RNA probes. The KUN RNA-core protein binding reactions are similar to those reported with other viral coat or capsid proteins and viral RNAs.  相似文献   

18.
19.
Ligand-binding RNAs and DNAs (aptamers) isolated by in vitro selection from random sequence pools provide convenient model systems for understanding the basic relationships between RNA structure and function. We describe a series of experiments that define the functional requirements for an RNA motif that specifies high-affinity binding to the carboxylation cofactor biotin. A simple pseudoknot containing an adenosine-rich loop accounts for binding in all independently derived aptamers selected to bind biotin, suggesting that it alone represents a global optimum for recognition of this particular nonaromatic, electrostatically neutral ligand. In contrast to virtually all previously identified aptamers, unpaired nucleotides make up a small fraction of the binding motif. Instead, the identity of 14 nucleotides involved in base pairing is highly conserved among functional clones and their substitution by nonidentical base pairs significantly reduces or eliminates binding. Chemical probing is consistent with the predicted pseudoknot motif and indicates that relatively little change in structure accompanies ligand binding, a strong contrast with results for other aptamers. Competition experiments suggest that the aptamer recognizes all parts of the biotin ligand, including its thiophane ring and fatty acid tail. Two alternative modes of binding are suggested by a three-dimensional model of the pseudoknot, both of which entail significant interactions with base-paired nucleotides.  相似文献   

20.
Sam68, a specific target of the Src tyrosine kinase in mitosis, possesses features common to RNA-binding proteins, including a K homology (KH) domain. To elucidate its biological function, we first set out to identify RNA species that bound to Sam68 with high affinity using in vitro selection. From a degenerate 40-mer pool, 15 RNA sequences were selected that bound to Sam68 with Kd values of 12-140 nM. The highest affinity RNA sequences (Kd approximately 12-40 nM) contained a UAAA motif; mutation to UACA abolished binding to Sam68. Binding of the highest affinity ligand, G8-5, was assessed to explore the role of different regions of Sam68 in RNA binding. The KH domain alone did not bind G8-5, but a fragment containing the KH domain and a region of homology within the Sam68 subgroup of KH-containing proteins was sufficient for G8-5 binding. Deletion of the KH domain or mutation of KH domain residues analogous to loss-of-function mutations in the human Fragile X syndrome gene product and the Caenorhabditis elegans tumor suppressor protein Gld-1 abolished G8-5 binding. Our results establish that a KH domain-containing protein can bind RNA with specificity and high affinity and suggest that specific RNA binding is integral to the functions of some regulatory proteins in growth and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号