首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CdSe/ZnS core–shell structured nano-crystal quantum dots (QDs) are ideal candidates for light-emission applications due to their high quantum efficiency, narrow-band, and particle-size-tunable photoluminescence. In particular, their small size results in the quantum confinement of semiconductor nano-crystals, which widens their energy gaps. In general, structural analyses of QDs using a transmission electron microscope (TEM) are very important due to the significantly small size of QDs. We were able to obtain structural information of CdSe/ZnS core–shell QDs using nano-beam diffraction by controlling the nano-probe of the dark field scanning TEM (DF-STEM) mode and strain analysis with high-resolution TEM (HRTEM)/STEM images. Furthermore, we could clearly distinguish the interface between the CdSe core and the ZnS shell from the strain analysis with the HRTEM/STEM images.  相似文献   

2.
Glutathione capped quantum dots are a potential candidate for different applications like ligand exchange in living cells, cell imaging and detection of glucose levels. Keeping these in mind, glutathione capped ZnS quantum dots were synthesized by using the thiol group of the capping agent by chemical precipitation method. Morphological characterizations were done by XRD and TEM. X-ray diffraction (XRD) measurements showed that the nanocrystals have Zinc Blende structure. Grain size and particle size shows a little variation with glutathione capping. Optical characterizations were done by UV–visible absorption, FTIR and energy resolved photoluminescence. UV–visible studies shows that the band gap also shows a small variation with glutathione capping. FTIR studies confirm glutathione capping on the surface of ZnS quantum dots. Room temperature energy resolved photoluminescence spectrum of samples exhibited a defect-related blue emission band. However, the PL properties seem to start tunability at higher concentration of glutathione which is a very good sign for extending this research further.  相似文献   

3.
Journal of Materials Science: Materials in Electronics - Quantum dots (QDs) attract extensive attention because of their excellent optoelectronic performance. However, few research has been done on...  相似文献   

4.
5.
In this paper, we demonstrated an enhanced performance of polymer solar cells by incorporating functionalized single-walled carbon nanotubes (SWCNTs) decorated with CdSe/ZnS core–shell colloidal quantum dots (CQDs) into copolymers of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as active layer. Short-circuit current density and power conversion efficiency of the ITO/PEDOT:PSS/P3HT:PCBM:(CdSe/ZnS-SWCNTs)/Al solar cells can be enhanced by more than 31 and 23 %, respectively, as compared with the control device ITO/PEDOT:PSS/P3HT:PCBM/Al. This enhancement is due to the high electron-transporting ability of SWCNTs and the increased absorption of CdSe/ZnS CQD in visible region. It shows an applicable way to improve the efficiency of polymer solar cells by incorporating suitable quantity of CQDs-decorated SWCNTs with suitable kinds of CQDs and suitable acid treatment to the SWCNTs.  相似文献   

6.
We investigated the temperature-dependent resonance energy transfer (ET) from CdSe–ZnS core–shell quantum dots (QDs) to monolayer MoS2. QDs/MoS2 structures were fabricated using a spin-coating method. Photoluminescence (PL) spectra and decay curves of the QDs/MoS2 structures were measured in the temperature range of 80?400 K. The results indicate that the PL intensity of the QDs decreased approximately 81% with increasing temperature, whereas that of the MoS2 increased up to a maximum of 78% at 300 K because of the combined effect of thermal quenching and the ET in the QDs/MoS2 structures. The ET efficiency and ET rate also exhibited similar variation trends, both increased with increasing temperature from 80 to 260 K and then decreased until 400 K, resulting in a maximum ET efficiency of 22% and an ET rate of 1.17 ns–1 at ~260 K. These results are attributed to the varied distribution of the localized excitons and free excitons in the QDs/MoS2 structures with increasing temperature.
  相似文献   

7.
8.
Indium phthalocyanine–CdSe/ZnS quantum dots (QDs) nanocomposites (InPc–CdSe/ZnS) of three sizes (5.57, 8.12 and 8.75 nm) were synthesized according to known procedures. The particle size of the CdSe/ZnS QDs alone are 3.95, 6.02, and 6.66 nm, and are denoted as QD1, QD2 and QD3 respectively. The nonlinear absorption (NLA) properties of the nanoconjugates (InPc–CdSe/ZnS) were investigated with nanosecond laser radiation at 532 nm wavelength. Enhanced NLA properties compared to the InPc alone were observed in the conjugates. The NLA was found to increase with the size of the CdSe/ZnS particles attached to the phthalocyanine. The observed increase was due to the availability of more free-carrier ions in the larger QDs, thus giving rise to the enhanced free-carrier absorption. The measured free-carrier absorption cross-sections (σFCA) are 1.10, 1.65 and 1.95 (×10−19 cm2) for InPc-QD1, InPc-QD2 and InPc-QD3 respectively. The nanoconjugates (InPc–CdSe/ZnS) showed a much lower threshold for optical limiting together with a much lower transmission at high fluences, than the previously reported nanocomposite limiters.  相似文献   

9.
We demonstrate an organic synthesis to fabricate hydrophobic core/shell CdSe/Cd1?x Zn x S quantum dots (QDs) with tunable photoluminescence (PL) between green and red at relatively low temperature using trioctylphosphine S reacted directly with cadmium and zinc acetate. A seeded growth strategy was used for preparing large CdSe cores. Large CdSe cores revealed a rod-like morphology while small one exhibited a spherical shape. Being coated with a Cd1?x Zn x S shell on spherical CdSe cores with an average size of 3.9 nm in diameter, core/shell QDs exhibited a cubic morphology (a length of 5 nm). In contrast, the core/shell QDs created using a small core (3.3 nm in diameter) show a spherical morphology. Namely, the anisotropic aggregation behavior of CdS monomers on CdSe cores occurs when the rod-like core is coated with a Cd1?x Zn x S shell. CdS interlayer plays an important role for such morphology evolution because all CdSe cores with a pure ZnS shell exhibited a spherical morphology. The PL properties of CdSe/Cd1?x Zn x S core/shell QDs depended strongly on the size and morphology of the cores. The QDs revealed a narrow and tunable PL spectrum. It is believed that this facile strategy can be extended to synthesize other core–shell QDs at low temperature.  相似文献   

10.
In this work, synthesis and characterization of core–shell zinc sulphide (ZnS)/zinc oxide (ZnO) nanocomposites has been reported to see the effect of ZnO concentration in core–shell combination. The nascent as well as core–shell nanostructures were prepared by a chemical precipitation method starting with the synthesis of nascent ZnS nanoparticles. The change in morphological and optical properties of core–shell nanoparticles was studied by changing the concentration of ZnO for a fixed amount of ZnS. The nascent ZnS nanoparticles were of 4–6 nm in diameter as seen from TEM, each containing primary crystallites of size 1.8 nm which was estimated from the X-ray diffraction patterns. However, the particle size increases appreciably with the increase in ZnO concentration leading to the well known ZnO wurtzite phase coated with FCC phase of ZnS. Band gap studies were done by UV–visible spectroscopy and it shows that band gap tunability can be achieved appreciably in case of ZnS/ZnO core–shell nanostructures by varying the concentration of ZnO. Fourier transform infrared analysis also proves the formation of core–shell nanostructures. Photoluminescence studies show that emission wavelength blue shifts with the increase in ZnO concentration. These core–shell ZnS/ZnO nanocomposites will be a very suitable material for any type of optoelectronic application as we can control various parameters in this case in comparison to the nascent nanostructures.  相似文献   

11.
A transparent poly (vinyl alcohol) (PVA) nanocomposite thin film (30–50 nm) reinforced with core/shell cadmium selenide (CdSe)/zinc sulfide (ZnS) quantum dots (QDs) was fabricated by a drop-casting method. A narrow peak at ~556 nm observed in the UV–vis spectrum indicates the uniformly dispersed QDs in the PVA matrix. FT-IR analysis indicates the interaction between the QDs and the polymer matrix. Both PVA and PVA-QDs nanocomposite thin films show polarized light dependent absorption properties with several different absorption peaks. As compared to the only fluorescent emission peak at 574 nm of QDs, the pure PVA and PVA-DDs nanocomposites show an excitation wavelength dependent fluorescent emission property.  相似文献   

12.
The present work proposes a preparation method for multilayered Au nanoparticle/silica/gadolinium compound core–shell (Au/SiO2/GdC) particles. Silica-coated Au core–shell (Au/SiO2) particles with a size of 38.0?nm were prepared by a sol-gel reaction in the presence of the Au nanoparticles with a size of 15.5?nm. Multilayered Au/SiO2/GdC particles with sizes of ca. 35–52?nm were prepared by a homogeneous precipitation reaction in the presence of Au/SiO2 particles. The computed tomography (CT) value of the Au/SiO2/GdC colloid solution containing 4.3?×?10?2?M Au was 344.1?HU: Its converted CT value (CT divided by Au concentration) was as large as 8.0?×?103?HU/M. The r1 value of the Au/SiO2/GdC colloid solution was as large as 3.5?mM?1?s?1.  相似文献   

13.
In the present work, we have prepared zinc sulphide (ZnS:Mn)/zinc oxide (ZnO) core–shell nanostructures by a chemical precipitation method and observed the effect of ZnO concentration on the fluorescent nanoparticles. Change in the morphological and optical properties of core–shell nanoparticles have been observed by changing the concentration of ZnO in a core–shell combination with optimum value of Mn to be 1 % in ZnS. The morphological studies have been carried out using X-ray diffraction (XRD) and transmission electron microscopy. It was found that diameter of ZnS:Mn nanoparticles was around 4–7 nm, each containing primary crystallites of size 2.4 nm which was estimated from the XRD patterns. The particle size increases with the increase in ZnO concentration leading to the well-known ZnO wurtzite phase which was coated on the FCC phase of ZnS:Mn. Band gap studies were performed by UV–visible spectroscopy and a red shift in absorption spectra have been observed with the addition of Mn as well as with the capping of ZnO on ZnS:Mn. The formation of core–shell nanostructures have been also confirmed by FTIR analysis. Photoluminescence studies show that emission wavelength is red shifted with the addition of ZnO layer on ZnS:Mn(1 %). These core–shell ZnS:Mn/ZnO nano-composites will be a very suitable material for specific kind of tunable optoelectronic devices.  相似文献   

14.
Encapsulation of liquid phases is a crucial step in many self-healing material systems where a healing agent has to be protected during processing and then released during a damage event. In this work, the mechanical properties of polyurethane (PU) reinforced urea–formaldehyde (UF) shells are characterized. It was found that shell thickness is both a function of PU content in the core phase and of the microcapsule diameter. Furthermore, a saturation thickness was found for high PU contents or high capsule diameters and this phenomenon had direct implications on the bursting force under compression of single microcapsules. With help of an analytical model, the Young's modulus of the hybrid PU/UF was determined and in general, PU-reinforced shells had a lower modulus but higher ductility in terms of elongation at break, leading to more resistant microcapsules overall.  相似文献   

15.
In this study, CdSe–ZnS/poly(lactic acid) (PLA) nanocomposite films, containing different concentrations of surface-modified CdSe–ZnS quantum dots (QDs), were prepared via a solution casting method. The optical microstructural and thermal properties of the as-prepared QDs/PLA films were investigated. The QDs/PLA films exhibited strong and stable photoluminescence (PL) intensity with concentration dependent amplitudes. The transmission electron microscopy (TEM) pictures revealed that QDs of ∼5 nm diameter were uniformly dispersed in the PLA matrix. According to the results of thermogravimetric analysis, the weight-loss onset temperature of PLA clearly decreased with the QD content. A combination of Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) results suggested that the QDs exhibit obvious nucleation activity on the crystallization behavior of the PLA matrix. This research provides useful information to the foundations of practical applications of QDs/PLA nanocomposites as fluorescent and biodegradable functionalized materials.  相似文献   

16.
With the aim to develop a novel water-soluble modified chitosan nanoparticle with tuned size and improved antibacterial activity, quaternized carboxymethyl chitosan/poly(amidoamine) dendrimers (CM-HTCC/PAMAM) were synthesized. Firstly low-generation amino-terminated poly(amidoamine) (PAMAM) dendrimers were prepared via repetitive reactions between Michael addition and amidation, which were then employed for modifying quaternized carboxymethyl chitosan (CM-HTCC). Prior to the reaction of CM-HTCC with PAMAM, carboxylic groups in CM-HTCC were activated with EDC/NHS in order to enhance the reaction efficiency. FT-IR, 1H NMR, elemental analysis and XRD were performed to characterize CM-HTCC/PAMAM dendrimers. Turbidity measurements showed that CM-HTCC/PAMAM dendrimers had good water-solubility. TEM images indicated that CM-HTCC/PAMAM dendrimers existed as smooth and spherical nanoparticles in aqueous solution. The results of antibacterial activity explored that CM-HTCC/PAMAM dendrimer nanoparticles displayed higher antibacterial activity against Gram-negative bacteria Escherichia coli (E. coli), whereas they showed much less efficiency against Gram-positive bacteria Staphylococcus aureus (S. aureus) compared to quaternized chitosan (HTCC).  相似文献   

17.
Poly(methyl methacrylate)–CuO microspheric particles with core–shell structure were synthesized by a chemical solution process within Cu(NO3)2/NH3·H2O reaction system. The composition and microstructure of the samples were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. It showed that the shell was constructed by leaf-like CuO grains with the length of 500–800 nm. UV–vis absorbance spectra of the samples exhibited novel wide adsorption band in ultraviolet region.  相似文献   

18.
Journal of Materials Science - Excellent thermal and mechanical properties and high chemical resistance with low shrinkage of epoxy resins open a wide window of various industrial applications,...  相似文献   

19.
Structural and optical properties of ZnO–GaP core–shell nanowires were studied by means of electron microscopy and microphotoluminescence. A thin ZnO shell layer was deposited by RF sputtering on GaP nanowires, which were grown on GaP (111)B substrates under vapour–liquid–solid mode by MOVPE. The SEM and TEM characterization showed that the ZnO shells fully covered the surface of the NWs from top to bottom. Each GaP NW core is composed of many well-defined twinned segments with the planes of twinning oriented in perpendicular to the growth direction. This was contradicted in kinked GaP NWs: their growth direction was initially perpendicular to the twinning planes, but once the NW had kinked, it changed to lie within the twinning planes. The ZnO shell deposited on the GaP core has a columnar morphology. The columns are inclined at a positive angle close to 70° with respect to the GaP growth axis. All observed columns were tilted at this angle to the growth direction. Micro-photoluminescence study showed that thermal annealing improved the quality of the ZnO crystallographic structure; the annealing made observable the photoluminescence peak related to the band-to-band transition in ZnO.  相似文献   

20.
The elastic behaviors of a two-axes dipole of wedge disclinations and an individual wedge disclination located inside the shell of a free standing core–shell nanowire is studied within the surface/interface elasticity theory. The corresponding boundary value problem is solved using complex potential functions, defined through modeling the disclination dipole by two finite walls of infinitesimal edge dislocations. The stress field, disclination strain energies and image forces acting on the disclinations, are calculated and studied in detail. It is shown that the stresses are rather inhomogeneous across the nanowire cross section, change their signs and reach local maxima and minima far from the disclination lines in the bulk or on the surface of the nanowire. For negative values of the surface/interface modulus and relatively small values of the ratio of the shell and core shear moduli, the surface/interface effect manifests itself through non-classical stress oscillations along the shell free surface in the case of a disclination dipole and core–shell interface in both the cases of a disclination dipole and an individual disclination. The non-classical solution for the strain energy deviates from the classical solution with different effects caused by the surface/interface moduli on the wedge disclination dipole and an individual disclination. When the core is softer than the shell, the dipole with radial orientation of its arm has an unstable equilibrium position in the shell. In general, if the surface/interface modulus is positive, the surface/interface effects are rather weak; however, if it is negative, the effect can be very strong, especially near the shell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号