首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
蔡星辰  杜垲  李彦军 《化工学报》2012,(Z2):170-175
在双效氨水吸收制冷循环的基础上,提出了一种增压双效氨水吸收制冷循环。结合Schulz氨水状态方程式,通过数学建模对该循环过程进行模拟计算。分析了增压比、制冷温度、热源温度、冷却水温度对循环性能的影响,并和双效氨水吸收制冷循环进行比较。结果表明,增压双效氨水吸收制冷循环中,增压比是非常重要的影响因素,它直接影响循环的性能系数;在其他工况参数不变的条件下,增压双效氨水吸收制冷循环有其最佳的增压比;在适当的增压比下,扩大了双效循环的应用范围,在制冷温度较低时,也可以具有较高的性能系数,而且在相同制冷温度下,降低驱动热源温度也能达到理想的循环效果,从而使本循环可利用的热源范围得以扩展。  相似文献   

2.
吸附-吸收复叠式三效制冷循环   总被引:4,自引:1,他引:4       下载免费PDF全文
提出一种以沸石 -水为工质对的单效吸附式制冷单元为高温级、以双效溴化锂吸收式制冷单元为低温级的吸附 -吸收复叠式三效制冷循环 .高温热源首先加热吸附式单元 ,通过能量在系统中的多效利用 ,从而提高系统性能系数 (COP) .相比于三效溴化锂吸收式制冷循环 ,复叠式循环中吸附式单元工质对温度高于 2 0 0℃时 ,也不会腐蚀材质 ,因而是一种工程上易于实现的新型制冷循环 .对该循环的热力性能进行了研究  相似文献   

3.
徐梦凯  李舒宏  金正浩 《化工学报》2021,72(Z1):127-133
通过试验研究了使用氨-水-溴化锂三元工质对氨吸收式制冷性能的影响。根据现有研究,工质中溴化锂的质量分数设定为5%、10%、15%和20%,试验中发生温度设定为90~130℃,蒸发温度设定为-19~-4℃,冷却水温度设定为22~33℃。通过试验发现,溴化锂质量分数在15%时对COP提升效果最好,发生温度在130℃时性能系数可以达到0.408,蒸发温度在-4℃时性能系数可达0.410,冷却水温度在22℃时性能系数可以达到0.412;而且添加三元工质可以减小精馏能耗且充分利用低品位热能,因此采用氨-水-溴化锂三元工质可以在高效利用热能情况下改善氨吸收式制冷系统的劣势。  相似文献   

4.
溴化锂吸收式制冷技术,以其无污染、低消耗、运行平稳、用能模式多等优点在节能和环保领域越来越受到人们的重视。但相对于压缩式制冷,其效率较低的缺点限制了溴化锂吸收式制冷技术的广泛应用。基于溴化锂水溶液气液特性中汽液相平衡和溶液混合与分离的原理,通过调节机组循环过程中内部和外部的参数,实验分析对制冷机组制冷特性的耦合影响。实验结果表明:蒸发温度、充注浓度和吸收压力的提高均能提高制冷量和COP值,且吸收压力的提高效果最显著,其增幅范围最高可以超过100%,而冷却水温度的提高降低了制冷量COP值。因此,适当的耦合调节机组循环的热物理参数可以明显提高制冷性能。  相似文献   

5.
吸附式制冷是一种绿色环保节能的制冷技术,在低于100℃的低品位热能如废热能、太阳能等的利用方面具有广阔的发展前景。为了能够利用这部分的能源,提出了由吸附制冷过程与再吸附过程组成的二级吸附式制冷循环。采用SrCl2-NH4Cl-NH3作为工质对,测试不同蒸发温度与冷却温度下吸附剂的吸附与解吸性能。实验测试结果表明:当热源温度为70℃时,二级吸附式制冷也能够实现-25℃下的冷量输出。在测试工况下,氯化锶的最大吸附量达到了理论吸附量的94%。80℃热源、25℃冷源以及-25℃制冷条件下二级吸附式制冷循环的COP和SCP达到了0.250与160 W·kg-1。这个数值与CaCl2-BaCl2-NH3两级冷冻在85℃驱动热源以及同等的冷源与制冷温度条件下的数据相对比,驱动热源需求降低了5℃,COP提高了4%,SCP提高了10%以上。  相似文献   

6.
提出了以低温余热为驱动热源的氨吸收,压缩联合制冷循环过程,根据schulz所建立的氨水溶液的热力学性质方程,对此循环过程的热力性能进行了模拟计算.分析考察了蒸发温度、压缩比、放气范围等参量对系统的制冷系数,发生温度和循环倍率的影响规律.结果表明,与单级氨吸收制冷相比,在同样的蒸发温度下,氨吸收/压缩联合制冷循环过程可以显著降低热源温度,为有效利用低温位余热进行制冷提供了一种有效的方法.  相似文献   

7.
陈尔健  代彦军 《化工学报》2021,72(Z1):445-452
近年来,日益增长的暖通空调系统能耗已接近50%的建筑能源消费量。吸收式循环可使用太阳能热能、工业废热等低品位能源产生制冷效果,进而降低夏季制冷负荷对高品味电能的大量需求。当前常用于吸收制冷循环的LiBr-H2O工质对虽然COP较高,但由于物性限制了其蒸发温度范围以及存在较高的结晶风险,使得系统小型风冷设计存在限制。氨水工质对具有较宽的制冷温区,但由于需要精馏以提高氨气浓度造成COP较低。NH3-LiNO3工质对无须增设精馏器,结晶温度远高于LiBr-H2O,且氨气压力较高适合在耦合压缩机循环以提升循环性能,扩宽运行温区。因此,本研究提出压缩机辅助的增压型回热吸收循环使用NH3-LiNO3工质对,并对其进行热力分析,研究压缩机的引入对循环性能的改进作用。结果显示,压缩机辅助作用下循环驱动温度下降至34℃,蒸发温度亦可降低至-34℃,且循环倍率降低了52.16%,更适于小型风冷设计。  相似文献   

8.
搭建了以活性炭-甲醇为工质对的单床吸附式制冷实验系统,对圆柱形吸附管内的吸附剂在不同解吸温度和不同解吸时间条件下的解吸量进行实验研究。解吸温度分别为84、89、94℃,解吸时间分别为4、5、6、7 h。实验结果表明,解吸温度、解吸时间和制冷剂的解吸量对吸附式制冷系统制冷循环性能有着重要影响。在热源温度为84℃加热时间4 h时,系统的制冷性能系数COP最小为0.053。系统在解吸温度为94℃,解吸时间为6 h时,系统的制冷性能系数COP最大为0.19,此时的解吸温度和解吸时间为最佳解吸温度和解吸时间。继续增加解吸时间,解吸量的增长率小于耗能的增长率,COP减小。  相似文献   

9.
搭建了以活性炭-甲醇为工质对的单床吸附式制冷实验系统,对圆柱形吸附管内的吸附剂在不同解吸温度和不同解吸时间条件下的解吸量进行实验研究。解吸温度分别为84、89、94℃,解吸时间分别为4、5、6、7 h。实验结果表明,解吸温度、解吸时间和制冷剂的解吸量对吸附式制冷系统制冷循环性能有着重要影响。在热源温度为84℃加热时间4 h时,系统的制冷性能系数COP最小为0.053。系统在解吸温度为94℃,解吸时间为6 h时,系统的制冷性能系数COP最大为0.19,此时的解吸温度和解吸时间为最佳解吸温度和解吸时间。继续增加解吸时间,解吸量的增长率小于耗能的增长率,COP减小。  相似文献   

10.
采用自行设计加工的变喷嘴距喷射器,在双蒸发压缩/喷射制冷实验平台上,研究了喷嘴距对喷射器和系统性能的影响规律,并与传统压缩制冷循环的性能进行对比。研究结果表明:喷射器存在一个最优喷嘴距能使引射系数(μ)、升压比(PLR)、系统性能系数(COP)和压缩比(CR)均达到最大值;在所研究的工况范围内,最优喷嘴距为?5 mm,与喷嘴距为+15 mm相比,μ最大可提高24.56%,PLR最大可提高7.34%,COP最大可提高11.5%,CR最大降低了3.47%;在不同冷却水进水温度和冷媒水进水温度下,双蒸发压缩/喷射制冷循环比传统压缩制冷循环性能更优,COP最大可分别提高33.97%和24.73%。研究结果可为双蒸发压缩/喷射制冷系统喷射器设计和系统运行参数优化提供参考。  相似文献   

11.
司继林 《上海化工》2013,38(10):5-7
利用ECSS软件分别对H20-LiBr第一类吸收式热泵和NH3-H20第二类吸收式热泵进行了模拟计算,并且探讨了吸收剂浓度和蒸发压力对系统温升和制热温度的影响.结果表明:H,0-LiBr第一类吸收式热泵在冷凝压力和蒸发压力不变的情况下,吸收剂浓度从58%增加到64%,温升从38.7℃增加到39.7℃;NH3-H2O第二类吸收式热泵驱动热源温度为85℃,蒸发压力为1 000 kPa,吸收剂浓度从50%增加到80%,温升从l9 ℃增加到46℃.可见增加吸收剂浓度有助于系统温升的提高.同样的思路对蒸发压力进行研究,得出结论:随着蒸发压力的提高,第一类吸收式热泵温升降低,第二类吸收式热泵温升提高.  相似文献   

12.
水工质安全、稳定、无毒、不易燃,是一种优秀的高温热泵用制冷工质。为了研究水蒸气热泵系统循环性能,设计了3种具有不同循环方式和辅助设备的水蒸气热泵系统,分别是单级压缩喷水系统、单级压缩带喷射器系统和两级压缩带中间换热器系统。并进行了理论建模与分析,理论分析与对比结果表明两级压缩系统在排气过热度、制热量、系统功耗和COP等方面均具有最优的性能。单级喷水系统比常规循环系统具有更好的性能,尤其是能有效降低排气过热度。在80℃蒸发、140℃冷凝时,常规系统的COP为3.01,而单级喷水系统和两级换热系统的COP分别为3.15和4.07,相比较于常规系统分别提升了4.7%和35.2%。而单级带喷射器系统在大温升工况下比常规循环系统有更优的COP。  相似文献   

13.
陈焕新  尚瑞  舒朝晖  谢军龙 《化工学报》2008,59(Z2):210-214
采用空冷吸收器、空冷冷凝器实现循环空冷化,是缩小吸收式系统体积、扩大其应用领域的重要途径之一。针对4种空冷双效溴化锂循环,建立集中参数模型,分析比较了不同运行参数(热源温度、室外冷却空气温度、蒸发温度)对4种循环性能的影响情况。结果表明,要实现循环空冷化,必须提高热源温度,同时4种循环相比,溶液在低温溶液热交换器前分流的并联循环热力性能明显低于其他3种循环,不宜空冷化。  相似文献   

14.
设计了一种基于多功能热管的高效吸附式制冰机组,采用氯化钙/活性炭复合吸附剂和氨作为吸附工质对。吸附床的加热解吸、冷却吸附及回热过程均由热管工作完成,对该新型吸附制冰机组进行了回质回热研究,结果表明,回质回热型循环可使机组的制冷性能系数COP提高25.5 %,加热量减小约13 %,同时冷却器负荷降低约21 %;采用先回质后回热方式,在回质过程中继续加热解吸床可进一步增加机组制冰量。与传统回质相比,系统COP和单位质量吸附剂制冷功率SCP提高幅度均在15 %以上,且机组SCP的提高幅度高于COP的幅度;吸附制冰机组性能随冷却水温度的升高而下降,但系统的SCP始终维持在较高的水平。当冷却水温度为27℃、蒸发温度为-18.9℃时,系统的SCP仍然高达356.5 W·kg-1。  相似文献   

15.
回质回热吸附式制冷循环的热力学分析与方案优选   总被引:1,自引:1,他引:0       下载免费PDF全文
徐圣知  王丽伟  王如竹 《化工学报》2016,67(6):2202-2210
吸附式制冷是一种能利用低品位热能的节能环保的制冷方式。在空调工况下,硅胶-水回质回热系统应用最多。为了解在特定工况下选择何种循环能提升系统性能,应用热力学第一与第二定律评价指标分析了基本循环、回质循环、回质回热循环的COP、(火用)效率、循环熵产。分析表明,回质循环存在推荐最高热源温度和最优热源温度,回质回热循环存在推荐最低热源温度和最优热源温度。例如对于典型夏季空调工况热源温度90℃、蒸发温度10℃、冷凝温度40℃,回质循环的推荐最高热源温度为93℃,高于实际热源温度90℃,选用回质循环更合适而非回质回热循环。最后,对制冷机组的分析表明给出的方法和推荐工作温度区间能针对实际系统给出方案优选和系统控制的指导性建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号