首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
采用了一种基于小波包能量熵结合集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)方式完成对高速列车轴箱轴承仿真振动信号和实测振动信号的故障诊断.在完成仿真轴承应力状态分布分析和仿真振动信号故障提取方式检验以及实测振动信号时域参数分析和对轴承故障初步诊断的基础上,对振动信号进行三层小波包分解以及降噪处理;将处理后的剩余信号进行重构,再对重构后的8个小波包频段进行能量熵和能量百分比的计算,找出所含剩余信息量较大的频段,进行EEMD方式分解;对分解后的IMF1分量进行频谱和包络谱转换,从而准确提取出轴箱轴承故障特征信号,完成轴承早期微弱故障特征提取.  相似文献   

2.
张祥  陈仁文 《机械强度》2020,42(3):509-515
为了实现对结构的损伤检测,提出一种基于小波包变换和Replicator Neural Network (RNN)的单位置结构损伤检测方法。首先采用小波包变换对原始振动响应信号进行分解,计算分解得到的各频带的相对频带能量,这些相对频带能量的分布反映了结构特性。然后,将健康结构的相对频带能量作为输入训练RNN。最后,利用训练后的网络即可对结构进行实时损伤检测。实验表明,即使在有噪声干扰下,该方法仍然能够检测出结构是否存在损伤。  相似文献   

3.
提出一种提升小波包分解、多传感器特征融合和神经网络模式分类相结合的结构损伤诊断方法.首先,对多个传感器采集的振动响应信号进行提升格式小波包分解,定义标准化相对能量并计算每个频带上的相对能量;然后,把这些传感器信号的小波包相对能量融合作为神经网络分类器的输入特征向量,实现损伤的诊断和评价.数值仿真结果表明,提升小波包分解的频带能量分布能够较好地反映结构的损伤特征;特征融合能够使不同传感器的信息相互补充,减小了损伤检测信息的不确定性,使诊断信息具有较高的精度和可靠性.  相似文献   

4.
基于小波包变换的梁体损伤识别   总被引:2,自引:2,他引:2  
由于小波包变换在分析非平稳信号方面较傅立叶变换更为有效,提出了基于小波包变换的能量变化率指标进行损伤识别的方法。首先,将得到的结构响应信号进行小波包分解,然后通过小波包能量变化率指标来进行损伤定位。通过3种不同损伤工况的梁体室内试验证明.损伤指标可以准确地识别损伤位置。  相似文献   

5.
针对结构损伤受外界环境因素影响、损伤指标不敏感等导致的结构识别困难问题,提出了一种基于EEMD和归一化IMF能量差的结构损伤识别新方法。首先对各传感器采集到的原信号进行EEMD分解得到多个IMF分量,再对各测点分解后的IMF分量进行能量的计算并进行归一化处理,求出与未损伤前各测点IMF分量的归一化能量差值,以结构损伤前后信号的EEMD分解后的IMF分量归一化能量差值作为结构损伤敏感因子构建各状态下的变化曲线,直观的判断结构损伤的位置。对三层框架模型结构和简支梁结构进行分析,结果表明该方法可以准确判断结构损伤的发生。  相似文献   

6.
针对随机噪声和虚假分量影响总体平均经验模态分解(EEMD)分解质量问题,提出基于奇异值分解(SVD)和第二代小波变换(SGWT)联合降噪预处理和本征模态分量(IMF)能量熵增量剔除虚假分量的改进EEMD方法。该方法首先对原始信号进行第二代小波变换,利用SVD对SGWT得到的高频系数进行降噪处理,克服了软、硬阈值法降噪的缺陷。然后对消噪处理的信号进行EEMD分解,通过IMF能量熵增量去除虚假分量;最后对主IMF分量进行Hilbert谱分析来提取信号的主要特征。仿真和实验结果表明,SVD和SGWT联合降噪故障信号信噪比显著提高,且失真度小,抑制了噪声对EEMD分解精度的干扰,能量熵增量能有效地去除虚假IMF,Hilbert谱中各频率成分清晰不混叠,成功提取了液压系统故障特征频率。  相似文献   

7.
针对强噪声背景下的故障信号诊断问题,提出一种基于小波去噪和改进型总体经验模式分解算法(Ensemble Empirical Mode Decomposition,EEMD)包络解调分析的滚动轴承故障诊断方法。由于经验模态分解方法易产生虚假分量和模态混叠现象,引入EEMD。首先将采集到的振动信号进行软阈值去噪,然后对去噪信号进行EEMD分解,抽取能量较大的前4个内禀模态函数(IMF)进行Hilbert变换,得到包络信号,最后对包络信号进行细化谱分析,得到轴承故障特征频率。小波去噪可解决噪声造成的包络信号粗糙这一问题,提高了包络提取精度。将该方法应用于滚动轴承的内圈和外圈故障诊断,诊断结果均表明该方法能够准确有效地提取故障特征频率。  相似文献   

8.
针对齿轮箱在强噪声背景下齿轮微弱故障振动信号的特征不易被提取的问题,提出将改进小波去噪和Teager能量算子相结合的微弱故障特征提取方法。采用改进小波阈值函数对振动信号进行去噪处理,与形态学滤波和传统小波阈值函数相比能够有效地提高信号的信噪比。对去噪后的信号进行集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)得到若干本征模式函数(intrinsic mode function,简称IMF),计算各IMF分量与原信号的相关系数并结合各IMF分量的频谱剔除虚假分量。对有效的IMF分量计算其Teager能量算子,并重构得到Teager能量谱,对重构信号进行时频分析并将其结果与原信号的希尔伯特黄变换(HilbertHuang transform,简称HHT)得到的边际谱进行对比。实验研究结果表明,本研究方法相比HHT能够对齿轮微弱故障特征进行更为有效地提取,验证了本研究方法在齿轮箱微弱故障诊断中的可行性。  相似文献   

9.
丁建明  林建辉  任愈  杨强 《机械强度》2011,33(4):483-487
将谐波小波包变换与信息熵相结合,从揭示故障信号能量分布的复杂程度入手,提出一种轴承故障实时诊断的新方法.对故障振动信号进行谐波小波包分解,将分解的小波系数按尺度进行排列,计算不同尺度的能量,以尺度能量为划分标准,计算故障信号的能量熵,通过能量的熵值诊断轴承故障.给出谐波小波包能量熵的轴承故障的具体诊断方法和模型.对不同...  相似文献   

10.
针对结构损伤识别中缺少实际损伤样本的问题,提出基于小波包特征提取的支持向量机结构损伤诊断方法.该方法将结构振动信号小波包分解后的频带能量,经过多传感器数据融合后作为特征向量,输入到多分类的支持向量机中,实现了结构多损伤的识别和定位.应用该方法对IASC-ASCE模型进行了分析,试验结果表明,小波包分解频带能量能够较好地反映结构的损伤特征.多传感器数据融合能够使不同传感器的信息相互补充,减小了损伤检测信息的不确定性,提高了损伤诊断准确率.  相似文献   

11.
将奇异值分解(singular value decomposition,简称SVD)与集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)进行结合,提出一种适用于滚动轴承弱故障状态描述的敏感特征提取方法。为提高信号故障信息的提取质量,对采集信号进行相空间重构得到一种Hankel矩阵。根据该矩阵的奇异值差分谱,确定降噪阶次进行SVD降燥。用EEMD分解降噪后的信号可获得11个本征模态函数(intrinsic mode function,简称IMF)和1个余项。依据建立的峭度-均方差准则,筛选出一个能够有效描述故障状态的敏感IMF分量,计算其相应的Teager能量算子(Teager energy operator,简称TEO),对此TEO进行Fourier变换,实现了对滚动轴承弱故障模式的有效辨识。用美国凯斯西储大学公开的滚动轴承故障信号对所建立的方法与传统EEMD-Hilbert法和EEMD-TEO方法进行对比,结果表明:经本方法提取的敏感特征能准确突显滚动轴承故障频率发生的周期性冲击,可准确识别其故障类型。  相似文献   

12.
提出一种基于局部切空间排序(local tangent space alignment,简称LTSA)和相关向量机(relevance uector machine,简称RVM)相结合的复合材料结构损伤演化与预测模型。针对复合材料结构损伤特性,采用疲劳振动试验进行结构损伤预测研究。首先,采用总体平均经验模态分解(ensemble empirical mode decomposition,简称EEMD)方法对多传感器采集的复合材料结构健康信息进行自适应分解,得到不同传感器下的多个本征模态分量(intrinsic mode function,简称IMF),并对IMF进行希尔伯特(Hilbert)变换,得到相应的Hilbert边际谱能量作为各传感器的特征信息;然后,采用LTSA进行多特征降维融合得到特征能量,对降维融合后得到特征能量采用距离形态相似度方法定义结构健康指数;最后,将结构健康指数作为建模数据,创建RVM预测模型,并通过预测结构健康指数完成复合材料结构损伤预测研究。验证结果表明,该模型可有效地对复合材料结构损伤进行预测。  相似文献   

13.
基于灰色准则与EEMD的滚刀振动信号降噪方法   总被引:1,自引:0,他引:1       下载免费PDF全文
工程现场采集的滚刀振动信号掺杂噪声,致使信号特征难以提取。提出一种基于灰色准则与集合经验模态分解(EEMD)的滚刀振动信号降噪方法。首先将原信号进行EEMD分解得到若干个特征模态函数(intrinsic mode function,IMF),再根据提出的灰色准则对IMF分量进行极性一致化处理、均值化处理,计算出IMF1与其他IMF分量的灰色关联度,并按照灰色关联度将IMF分量降序排列,然后选择降序排列中前一半IMF分量进行软阈值处理,最终将处理后的IMF分量、未处理的IMF分量及余项进行重构,得到降噪后的信号。通过不同初始信噪比的仿真信号和实际加工中的滚刀振动信号验证了本方法的可行性和有效性,同时与EEMD结合相关系数降噪法、小波软阈值降噪法进行了比较,结果表明本方法的降噪效果更优。  相似文献   

14.
基于HHT的非平稳信号分析仪的研究   总被引:2,自引:1,他引:2  
本文介绍了希尔伯特-黄变换(HHT)的原理,首先通过经验模态分解(EMD),信号被分解成一系列固有模态函数(IMF),再通过Hilbert变换得到每个IMF的瞬时频率(IF)和瞬时幅值函数,最终得到原始信号的IF分布和Hilbert谱。Hilbert谱是信号的时间-频率-能量分布。为使HHT能有效分析非平稳信号,引入了改进HHT的方法,即在HHT过程中,将小波包变换(WPT)作为预处理器,外加IMF的筛选。采用虚拟仪器开发技术研制了一台基于HHT的非平稳信号分析仪。最后以HHT去噪为例,介绍了基于HHT的非平稳信号分析仪的应用。  相似文献   

15.
为了准确识别水工结构的损伤,提出一种变分模态分解(variational mode decomposition,简称VMD)和Hilbert-Huang变换(Hilbert-Huang transform,简称HHT)边际谱相结合的水工结构损伤诊断方法。首先,采用联合的小波阈值和经验模态分解(empirical mode decomposition,简称EMD)降噪方法对原始信号进行降噪,减小环境噪声对结构损伤特征信息的干扰;其次,运用方差贡献率数据融合算法对降噪后各测点信号进行动态融合,提取结构完整的振动特性信息;然后,采用VMD方法将动态融合信号分解为一系列固态模量(intrinsic mode function,简称IMF),对各IMF分量进行Hilbert变换,求出融合信号的边际谱;最后,在VMD边际谱的基础上提取一种新的损伤特征向量-损伤灵敏指数,将其与马氏距离相结合对水工结构的损伤类型进行分类,并将该方法应用于悬臂梁模型试验。结果表明:该方法能够有效提取水工结构的损伤特性,准确识别水工结构的损伤和运行状态,为水工结构的安全运行提供了基础。  相似文献   

16.
针对移动荷载作用下桥梁结构振动响应信号呈现非平稳性的特点,构建新的一阶本征函数自功率谱最大值变化比和一阶本征函数小波能量变化率两个指标来识别时变结构的损伤。首先,采用小波阀值去噪法对时变结构响应信号进行去噪处理;其次,运用解析模态分解定理提取响应信号的一阶本征函数并构建一阶本征函数自功率谱最大值变化比指标来识别结构的损伤位置,在识别结构损伤位置的基础上,将损伤位置处的加速度响应信号的一阶和二阶本征函数进行线性混叠后,采用快速独立成分分析进行分离,得到更有效的一阶本征函数;最后,基于连续小波变换和时间窗思想,提出一阶本征函数小波能量变化率指标来预测结构的时变损伤。通过移动荷载作用下的时变简支钢桥试验验证所提出的损伤指标,研究结果表明,提出的两个指标能够有效识别结构的损伤位置和时变损伤。  相似文献   

17.
为研究弹载部件在导弹发射过程中的冲击响应及冲击信号的传递特性,进行了基于希尔伯特-黄变换(Hilbert-Huang transform,简称HHT)的导弹发射冲击时频谱分析。由于经验模态分解(empirical mode decomposition,简称EMD)结果易受白噪声的影响,研究了总体经验模态分解(ensemble empirical mode decomposition,简称EEMD)技术。以弹体不同位置的实测冲击信号为对象,应用HHT技术进行分析,准确得到了导弹发射冲击信号的固有模态函数(intrinsic mode function,简称IMF)和时间-频率-能量谱特征,并研究了两次冲击的频率分布和各阶IMF与原始信号的相关性。结合边际谱分析对比了两个舱段能量在中低频和高频的传递特性,进一步验证了HHT方法在分析非线性和非平稳冲击信号中的优越性。  相似文献   

18.
基于EMD和支持向量机的柴油机故障诊断   总被引:6,自引:1,他引:5  
为了解决传统小波或小波包变换方法对柴油机振动信号频率分辨率不高、易受邻近谐波分量间交叠影响的缺陷,提出了一种基于经验模态分解和支持向量机的故障诊断方法。该方法首先对振动信号进行经验模态分解,分别提取能量最大的几个基本模式分量的小波包特征;然后采用支持向量机在每个独立的特征子集中进行训练,并按该子集对应的基本模式分量的能量权重进行加权融合。试验中将该方法应用于6135型柴油机的故障诊断,结果表明,针对每个基本模式分量分别进行故障分析是可行的,能够对6135型柴油机常见故障模式进行准确识别。  相似文献   

19.
起伏振动气液两相流型准确识别对漂浮核动力平台安全稳定运行有重要意义。通过对比静止和起伏振动管道的压差信号以及对应的频谱图发现,起伏振动管道内的压差信号波动幅度更大且包含更多的频率分量,两种流型均含有主频率,该频率为起伏振动频率。针对起伏振动状态气液两相流压差信号的复杂性,分别采用自适应白噪声的完备总体经验模态分解(CEEMDAN)和集合经验模态分解(EEMD)对小波降噪后的压差信号进行模式分解,发现CEEMDAN能够在减少模式分量的同时获得更多有效的分量。通过计算spearman相关系数选择具有表征意义的IMF分量进行Hilbert变换计算能量作为特征值,采用概率神经网络对流型进行识别。结果表明,采用CEEMDAN进行模式分解结合概率神经网络的识别方法准确率达到95.83%,能够用于起伏振动下气液两相流型识别。  相似文献   

20.
Ensemble empirical mode decomposition (EEMD) is widely used in condition monitoring of modern machine for its unique advantages. However, when the signal-to-noise ratio is low, the de-noising function of it is often not ideal. Thus, a new fault feature extraction method for rolling bearing combining EEMD and improved frequency band entropy (IFBE) is proposed, i.e., EEMD–IFBE. According to the problem of multiple intrinsic mode functions (IMFs) generated by EEMD, how to select the sensitive IMF(s) that can better reflect fault characteristics, a novel method based on FBE for sensitive IMF is proposed. In addition, since the bandwidth parameter is set empirically when the band-pass filter is designed based on the original FBE, a novel bandwidth parameter optimization method based on the principle of maximum envelope kurtosis is proposed. First, the original vibration signal is subjected to EEMD to obtain a series of IMFs; Then, the FBE values are obtained for the original signal and each IMF component, and the bandwidth of the band-pass filter (empirically) is designed as the characteristic frequency band at the minimum entropy value, and the affiliation between the characteristic frequency band of each IMF and the characteristic frequency band of the original signal is compared, and then selecting the sensitive IMF(s) that reflects the characteristics of the fault; Third, due to the influence of background noise, it is difficult to accurately obtain the fault frequency from the selected IMF(s). Therefore, the band-pass filter designed based on FBE is used, and the bandwidth parameter is optimized based on the principle of envelope kurtosis maximum, and then the selected sensitive IMF is band-pass filtered. Finally, the envelope power spectrum analysis is performed on the filtered signal to extract the fault characteristic frequency, and then the fault diagnosis of the bearing is realized. The method is successfully applied to simulated data and actual data of rolling bearing, which can accurately diagnose fault characteristics of bearing and prove the effectiveness and advantages of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号