首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
7039铝合金高温的热变形行为   总被引:2,自引:3,他引:2  
采用圆柱试样在Gleeble-1500材料热模拟实验机上对7039铝合金进行高温等温压缩实验,研究了该合金在变形温度为300-500℃,应变速率为0.01-10/s条件下的流变变形行为.结果表明:变形温度和应变速率对合金流变应力的大小有显著影响,流变应力随变形温度的升高而降低,随心变速率的增加而升高;在应变速率(ω)<10/s条件下合金表现出动态回复特征,而应变速率(ω)=10/s时,合金发生了局部动态再结晶.7039铝合金的高温流变行为可用Zener-Hollomon参数描述.从流变应力、应变速率和变彤温度的相关性,得出了该合金高温变形时的四个材料常数.  相似文献   

2.
采用Gleeble-3500热模拟机研究了GH708合金在变形温度1000℃~1200℃,应变速率为0.001s-1~1s-1条件下的热变形行为.确定了GH708合金的热变形方程,建立了其热加工图(Processing Map),并通过组织观察对其热加工图进行了解释.GH708合金的热变形激活能Q为493 kJ/mol;不同真应变下的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率η逐渐升高.真应变为0.6时,在变形温度为1150℃左右、应变速率为0.001 s-1时,能量消耗效率达到峰值,约为56%.该结果为GH708合金的热加工工艺优化提供了理论依据.  相似文献   

3.
GH708高温合金热变形行为   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟机研究了GH708合金在变形温度1000℃~1200℃,应变速率为0.001s-1~1s-1条件下的热变形行为.确定了GH708合金的热变形方程,建立了其热加工图(Processing Map),并通过组织观察对其热加工图进行了解释.GH708合金的热变形激活能Q为493 kJ/mol;不同真应变下的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率η逐渐升高.真应变为0.6时,在变形温度为1150℃左右、应变速率为0.001 s-1时,能量消耗效率达到峰值,约为56%.该结果为GH708合金的热加工工艺优化提供了理论依据.  相似文献   

4.
KFC铜合金热压缩变形流变应力   总被引:12,自引:4,他引:12  
在Gleeble-1500热模拟机上对KFC铜合金在应变速率为0.01~10s^-1、变形温度为650~850℃条件下的流变应力进行了研究。结果表明:在实验范围内,KFC铜合金热压缩变形过程中发生明显的动态再结晶;用Zener-Hollomon参数的双曲对数函数能较好的描述KFC铜合金高温变形时的流变应力行为;所获得的应变速率ε解析表达式中,参数InA1、n和α值分别为31.1s^-1、6.08和0.017MPa^-1;其热变形激活能Q为288.79kJ/mol;定量描述了溶质原子对不同纯度铜热变形激活能的影响。并建立了相应关系式。  相似文献   

5.
新型含Zr超高强Al-Zn-Mg-Cu-Zr合金的高温压缩流变行为   总被引:1,自引:0,他引:1  
采用等温压缩试验法,研究了新型含Zr超高强Al-Zn-Mg-Cu-Zr合金在变形温度为300~450℃和应变速率为0.001~1s-1条件下的流变变形行为,获得了等温恒速单轴方向热压缩变形过程的真应力-真应变曲线,建立了流变应力本构方程。结果表明:在实验范围内,该合金高温压缩时均存在稳态流变特征且属于正应变速率敏感材料;在较低温度和较高应变速率条件下,流变应力除了与应变速率、变形温度有关以外,还与变形量有关;可用包含Arrhenius项的Zener-Hollomon参数描述该合金的高温压缩流变行为,基于热模拟试验提供的真应力-真应变数据,可得出流变应力σ解析表达式中A、α和n分别为2.09×106s-1、0.019MPa-1和5.075,其热变形激活能Q为112.66kJ/mol。  相似文献   

6.
GH625合金的热变形行为   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟试验机研究了GH625高温合金在应变速率为0.001~1 s-1、变形温度为1223~1373 K条件下的热变形行为。结果表明:当变形温度一定时,随应变速率的升高,合金的峰值应力σp和稳态流动应力σs及对应的应变εp和εs均升高;当变形速率一定时,随变形温度的升高,σp和σs以及εs均降低,但εp基本保持不变。GH625合金在热压缩变形过程中应变速率的降低和变形温度的升高均有利于动态再结晶的发生;根据应力-应变曲线,通过线性回归获得GH625合金的本构方程。  相似文献   

7.
优质GH4169镍基高温合金的Nb含量较高,热变形工艺参数需严格控制,特别是经δ 相时效处理(Delta Processed,DP)后,因此有必要对其热变形行为进行研究。本文对经DP处理后的优质GH4169高温合金在不同变形温度 (980,1010,1040和1070°C)及应变速率 (0.001,0.01,0.1和1 s-1)进行热模拟压缩实验。结果表明: GH4169镍基高温合金在该变形条件下的平均激活能Q = 528.24 kJ/mol,Nb元素含量上调会显著增加合金的变形激活能(约40 kJ/mol),该材料的热变形过程可通过双曲正弦本构模型进行描述。通过表征相应热变形后的显微组织,结合GH4169高温合金的热加工图,表明GH4169高温合金适宜在低温低应变速率和高温高应变速率下加工。  相似文献   

8.
采用Gleeble-3500和Deform-3D有限元软件研究了GH2132高温合金在变形温度为950~1100℃和应变速率为0.001~10s-1时的热变形行为.研究表明,在应变速率为1s-1时,流变曲线与其他流变曲线明显不同,表现出显著的应力降现象.基于流变应力与变形温度和应变速率的关系,构建了 GH2132高温合...  相似文献   

9.
在变形温度为1050~1180℃、应变速率为0.1~10s-1、最大真应变为0.7的条件下,采用Gleeble-3500热模拟试验机研究GH4199合金的热压缩变形行为,得到该合金的热变形激活能及热变形方程式,建立合金的热加工图,并通过组织观察对其热加工图进行解释。结果表明:在实验条件下,GH4199合金均表现出动态再结晶特征;变形温度和应变速率对合金流变应力及相应峰值应变大小的影响显著,流变应力及峰值应变均随着变形温度的降低和应变速率的增加而增大;在真应变为0.1~0.7时合金的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率逐渐升高;在应变速率为0.01s-1时,能量消耗效率达到峰值,约为41%。  相似文献   

10.
Ti-1300合金的热变形行为研究   总被引:3,自引:1,他引:2  
采用Gleeble-1500型热模拟试验机对Ti-1300近β钛合金进行了等温恒应变速率压缩试验.变形温度范围为:920~1010℃,应变速率范围为:0.01~10 s-1,最大变形量为80%.根据试验数据建立了Ti-1300合金高温热变形行为的流变应力模型,得出该合金的变形激活能为177.59 kJ/mol.结合样品的显微组织分析可知,该合金在低应变速率下发生了动态再结晶,且随着温度的升高,再结晶晶粒呈现长大的趋势:在高应变速率下以动态回复为主.结果表明,为获得细小的再结晶组织,Ti-1300钛合金宜在相变点以上50~150℃的温度范围内采用较低的变形速率进行锻造.  相似文献   

11.
采用Gleeble-1500热模拟机对圆柱试样进行恒温和恒速压缩变形实验,研究了01570铝合金在变形温度为360-480℃、应变速率为0.001~1s^-1条件下的流变变形行为。结果表明:应变速率和变形温度对合金流变应力的大小有显著影响,流变应力随温度升高而降低,随应变速率的提高而增大,达到峰值后趋于平稳,表现出动态回复的特征。可用包含Arrhenius项的Zener-Hollomon参数描述01570铝合金高温塑性变形时的流变行为。  相似文献   

12.
In order to evaluate the deformation characteristics of spray formed superalloy GH742 and determine the appropriate forging procedure of the alloy on this basis,the influence of deformation temperature and strain rate on the ductility of spray formed GH742 was investigated by using the Gleeble-3500 thermal-mechanical testing machine. It is shown that the forgeability of spray formed GH742 is better than conventional GH742 by ingot metallurgy because of refined grain structure and enhanced chemical homogeneity of spray formed GH742.In the temperature range of 1020 to 1100℃,the ductility of spray formed GHT742 is dependent on the deformation temperature and is increased linearly in proportion to the increment of deformation temperature, which is more than 40% at 1020℃ and more than 60% at the temperature between 1100 and 1140℃.Furthermore,the results indicate the flow stress is affected considerably by the deformation temperature and strain rate.In the temperature range of 1020 to 1140℃,the maximum flow stress of spray formed GH742 increases with the increment of strain rate and decreases with the increment of the deformation temperature.  相似文献   

13.
采用Gleeble-1500热模拟机对GH738镍基高温合金进行高温热压缩变形实验,分析该合金在变形温度1000~1160℃、应变速率0.01~10s-1、工程变形量15%~70%条件下流变应力的变化规律。确定GH738合金热变形方程,建立热加工图(Processing map),并通过组织观察对热加工图进行解释。GH738合金热变形激活能Q为499kJ/mol;热加工图随不同变形量而变化,在应变速率较低,温度较高的状态下,能量耗散效率较高。综合应变量为0.2,0.4,0.6和0.8应变量下的热加工图,确立了该合金最佳热加工"安全通道",为GH738高温合金热加工工艺优化提供理论依据。  相似文献   

14.
采用非持续加热方式设计非等温热模拟压缩实验,模拟不同终锻温度条件下GH4738高温合金的热变形行为,并结合组织观察分析终锻温度对GH4738合金组织均匀性以及后续热处理过程组织遗传性的影响规律。研究结果表明,在相同始锻温度条件下,终锻温度过低会抑制GH4738合金热变形过程中动态再结晶的发生,从组织上表现为再结晶程度较低,从流变曲线上表现为变形抗力明显升高;并且由于终锻温度过低所导致的不充分再结晶组织,在后续热处理过程中易发展为混晶组织,从而影响合金的组织均匀性。为保证锻件组织均匀性,在制备过程中应合理控制终锻温度。  相似文献   

15.
对GH742合金自耗锭(Ф508mm)的热变形行为及热加工工艺进行了研究。结果表明,在试验条件范围内,GH742合金的流变应力随变形温度的降低和应变速率的提高而迅速增大,提高变形温度能够有效地促进动态再结晶过程。GH742铸锭变形温度应在1075℃以上,变形量控制在40%-60%。新型保温技术适用于难变形高温合金的自由锻开坯。  相似文献   

16.
采用Gleeble-1500热模拟机研究了某新型粉末合金在变形温度为1070~1170℃、应变速率为5×10-4s-1~2×10-1s-1的热压缩塑性变形行为,分析了合金流变应力、应变速率、变形温度之间的关系。结果表明,该合金的真应力-应变曲线在高应变速率下(ε≥2×10-2s-1),呈现出典型的动态再结晶特征,低应变速率下(ε≤2×10-3s-1),呈现动态回复特征;热塑性变形流变行为可用包含Arrhenius项的Z参数描述;随着变形温度的提高,该合金的应变速率敏感指数值变化很小。  相似文献   

17.
采用Gleeble-3500热模拟试验机进行等温热压缩实验,分析了GH2907合金在变形温度950℃~1100℃、应变速率0.01s<sub>-1</sub>~10s<sub>-1</sub>、变形量60%条件下的高温流变行为。结果表明:合金的流变应力随着变形温度的升高或应变速率的降低而显著降低。利用Arrhenius双曲正弦方程和Zener-Hollomon参数计算得出合金的热变形激活能Q为463.043kJ.mol<sub>-1</sub>;合金的应力-应变曲线具有明显的动态再结晶(DRX)特征,变形量、变形温度以及应变速率对DRX体积分数均具有显著影响。基于应力-位错关系和DRX动力学,建立了加工硬化-动态回复和动态再结晶两个阶段的机理型本构模型,可用于描述流变应力与应变速率和变形温度之间的关系。误差分析相关系数R为0.987,预测值与实验值吻合良好,可用于表征预测GH2907合金的热变形行为。  相似文献   

18.
GH625合金的动态再结晶行为研究   总被引:1,自引:0,他引:1  
采用Gleeble-3800热模拟试验机研究了GH625合金在变形温度为950~1150℃,应变速率为0.001~5s-1条件下的热变形特性,并用OM和TEM分析了变形条件对微观结构的影响。结果表明:当应变量很小时,该合金没有发生再结晶,直到应变量达到0.1时才开始有再结晶晶粒析出。随着变形温度的升高,再结晶晶粒尺寸增大,位错密度降低;当温度较低时显微结构中可以观察到孪晶。当变形温度一定时,随应变速率的增大,再结晶的形核率增大且晶粒变小,位错密度变大;而当应变速率较低时,再结晶进行得比较充分,晶粒尺寸较大。根据实测的应力-应变曲线,获得了该合金发生动态再结晶的临界应变εc和峰值应变εp与Z参数之间的关系:εc=2.0×10-3.Z0.12385,lnεp=-6.02285+0.12385lnZ。此外,还采用定量金相法计算出了合金的动态再结晶体积分数,并建立了该合金动态再结晶的动力学模型:Xd=1-exp[-0.5634(ε/εp-0.79)1.313]。  相似文献   

19.
通过热模拟压缩实验研究了GH2907合金在变形温度为950~1100℃、应变速率为0.01~10s-1、变形量为60%条件下的热变形行为,流变应力随着变形温度的升高或应变速率的降低而显著降低;根据Arrhenius方程和Zener-Hollomon参数,计算了热变形激活能Q,建立了GH2907合金的热变形本构方程;根据动态材料模型,确定了GH2907合金在不同应变下的功率耗散图,功率耗散效率η较高的区域位于温度为1050~1100℃,应变速率为0.01~0.03s-1范围,在该变形区域内组织发生了明显的动态再结晶现象;基于Preased失稳判据,绘制了GH2907合金在不同应变下的热加工图,流变失稳区位于高温高应变速率区域,即温度为970~1100℃,应变速率为0.6~10s-1范围,在该变形区域内动态再结晶晶粒沿着绝热剪切带和局部流动分布。根据GH2907合金热加工图及微观组织分析得到适宜的加工区域是温度为1050~1100℃,应变速率为0.01~0.03s-1范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号