首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenic-rich uranium mine tailings from the Rabbit Lake in-pit tailings management facility (RLITMF) in northern Saskatchewan, Canada, were investigated to determine the mineralogy and long-term stability of secondary arsenic precipitates formed from iron-rich hydrometallurgical solutions. Total arsenic and iron concentrations in six iron-rich samples of the mine tailings ranged from 56 to 6,000 microg/g and from 12 600 to 30 200 microg/g, respectively (Fe/As molar ratios of 5.3-303). On the basis of stability field diagrams generated from pH, Eh, and temperature measurements on tailings samples (mean values of 9.79, +162 mV, and 2.8 degrees C, respectively), it was concluded that arsenic and iron in the tailings were stable as As5+ and Fe3+. Synchrotron-based X-ray absorption spectroscopic studies of tailings samples, fresh mill precipitates, and reference compounds showed that the arsenic in iron-rich areas of the tailings existed as the stable As5+ and was adsorbed to 2-line ferrihydrite through inner-sphere bidentate linkages. Furthermore, under the conditions in the RLITMF, the 2-line ferrihydrite did not undergo any measurable conversion to more crystalline goethite or hematite, even in tailings discharged to the RLITMF 10 yr prior to sampling.  相似文献   

2.
2-Line ferrihydrite, a form of iron in uranium mine tailings, is a dominant adsorbent for elements of concern (EOC), such as arsenic. As ferrihydrite is unstable under oxic conditions and can undergo dissolution and subsequent transformation to hematite and goethite over time, the impact of transformation on the long-term stability of EOC within tailings is of importance from an environmental standpoint. Here, studies were undertaken to assess the rate of 2-line ferrihydrite transformation at varying As/Fe ratios (0.500-0.010) to simulate tailings conditions at the Deilmann Tailings Management Facility of Cameco Corporation, Canada. Kinetics were evaluated under relevant physical (~1 °C) and chemical conditions (pH ~10). As the As/Fe ratio increased from 0.010 to 0.018, the rate of ferrihydrite transformation decreased by 2 orders of magnitude. No transformation of ferrihydrite was observed at higher As/Fe ratios (0.050, 0.100, and 0.500). Arsenic was found to retard ferrihydrite dissolution and transformation as well as goethite formation.  相似文献   

3.
High concentrations of residual metal contaminants in mine tailings can be transported easily by wind and water, particularly when tailings remain unvegetated for decades following mining cessation, as is the case in semiarid landscapes. Understanding the speciation and mobility of contaminant metal(loid)s, particularly in surficial tailings, is essential to controlling their phytotoxicities and to revegetating impacted sites. In prior work, we showed that surficial tailings samples from the Klondyke State Superfund Site (AZ, USA), ranging in pH from 5.4 to 2.6, represent a weathering series, with acidification resulting from sulfide mineral oxidation, long-term Fe hydrolysis, and a concurrent decrease in total (6000 to 450 mg kg(-1)) and plant-available (590 to 75 mg kg(-1)) Zn due to leaching losses and changes in Zn speciation. Here, we used bulk and microfocused Zn K-edge X-ray absorption spectroscopy (XAS) data and a six-step sequential extraction procedure to determine tailings solid phase Zn speciation. Bulk sample spectra were fit by linear combination using three references: Zn-rich phyllosilicate (Zn(0.8)talc), Zn sorbed to ferrihydrite (Zn(adsFeOx)), and zinc sulfate (ZnSO(4) · 7H(2)O). Analyses indicate that Zn sorbed in tetrahedral coordination to poorly crystalline Fe and Mn (oxyhydr)oxides decreases with acidification in the weathering sequence, whereas octahedral zinc in sulfate minerals and crystalline Fe oxides undergoes a relative accumulation. Microscale analyses identified hetaerolite (ZnMn(2)O(4)), hemimorphite (Zn(4)Si(2)O(7)(OH)(2) · H(2)O) and sphalerite (ZnS) as minor phases. Bulk and microfocused spectroscopy complement the chemical extraction results and highlight the importance of using a multimethod approach to interrogate complex tailings systems.  相似文献   

4.
Mineral processing effluents generated in hydrometallurgical industrial operations are sulfate based; hence it is of interest to investigate the effect sulfate matrix solution ("sulfate media") has on arsenate adsorption onto ferrihydrite. In this work, in particular, the influence of media (SO4(2-) vs NO3-), added gypsum, and pH alteration on the adsorption of arsenate onto ferrihydrite has been studied. The ferrihydrite precipitated from sulfate solution incorporated a significant amount of sulfate ions and showed a much higher adsorption capacityfor arsenate compared to nitrateferrihydrite at pH 3-8 and initial Fe/As molar ratios of 2, 4, and 8. Adsorption of arsenate onto sulfate-ferrihydrite involved ligand exchange with SO4(2-) ions that were found to be more easily exchangeable with increasing pH. Added gypsum to the adsorption system significantly enhanced the uptake of arsenate by ferrihydrite at pH 8. Equilibration treatment at acidic pH and addition of gypsum markedly improved the stability of adsorbed arsenate on ferrihydrite when pH was elevated. Comparison of arsenate adsorption onto ferrihydrite to coprecipitation of arsenate with iron(III) showed the latter process to lead to higher arsenic removal.  相似文献   

5.
Ketza River mine tailings deposited underwater and those exposed near the tailings impoundment contain approximately 4 wt % As. Column-leaching tests indicated the potential for high As releases from the tailings. The tailings are composed dominantly of iron oxyhydroxides, quartz, calcite, dolomite, muscovite, ferric arsenates, and calcium-iron arsenates. Arsenopyrite and pyrite are trace constituents. Chemical compositions of iron oxyhydroxide and arsenate minerals are highly variable. The XANES spectra indicate that arsenic occurs as As(V) in tailings, but air-drying prior to analysis may have oxidized lower-valent As. The EXAFS spectra indicate As-Fe distances of 3.35-3.36 A for the exposed tailings and 3.33-3.35 A for the saturated tailings with coordination numbers of 0.96-1.11 and 0.46-0.64, respectively. The As-Ca interatomic distances ranging from 4.15 to 4.18 A and the coordination numbers of 4.12-4.58 confirm the presence of calcium-iron arsenates in the tailings. These results suggest that ferric arsenates and inner-sphere corner sharing or bidentate-binuclear attachment of arsenate tetrahedra onto iron hydroxide octahedra are the dominant form of As in the tailings. EXAFS spectra indicate that the exposed tailings are richer in arsenate minerals whereas the saturated tailings are dominated by the iron oxyhydroxides, which could help explain the greater release of As from the exposed tailings during leaching tests. It is postulated that the dissolution of ferric arsenates during flow-through experiments caused the high As releases from both types of tailings. Arsenic tied to iron oxyhydroxides as adsorbed species are considered stable; however, iron oxyhydroxides having low Fe/As molar ratios may not be as stable. Continued As releases from the tailings are likely due to dissolution of both ferric and calcium-iron arsenates and desorption of As from high-As bearing iron oxyhydroxides during aging.  相似文献   

6.
Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respectto Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a -3x increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by approximately 12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These data suggest that in situ redox cycling may serve as an effective method for  相似文献   

7.
From 1938 until 1975, flotation tailings from the Potrerillos--El Salvador mining district (porphyry copper deposits) were discharged into the El Salado valley and transported in suspension to the sea at Chaliaral Bay, Atacama Desert, northern Chile. Over 220 Mt of tailings, averaging 0.8 +/- 0.25 wt % of pyrite, were deposited into the bay, resulting in over a 1 kilometer seaward displacement of the shoreline and an estimated 10-15 m thick tailings accumulation covering a approximately 4 km2 surface area. The Chaniaral case was classified by the United Nations Environmental Programme (UNEP) in 1983 as one of the most serious cases of marine contamination in the Pacific area. Since 1975, the tailings have been exposed to oxidation, resulting in a 70-188 cm thick low-pH (2.6-4) oxidation zone at the top with liberation of divalent metal cations, such as Cu2+, Ni2+, and Zn2+ (up to 2265 mg/L, 18.1 mg/L, and 20.3 mg/ L, respectively). Evaporation-induced transport capillarity led to metal enrichment atthe tailings surface (e.g. up to 2.4% Cu) in the form of secondary chlorides and/or sulfates (dominated by eriochalcite [CuCl.H2O] and halite). These, mainly water-soluble, secondary minerals were exposed to eolian transport in the direction of the Village of Cha?aral by the predominant W-SW winds. Two element-flow directions (toward the tailings surface, via capillarity, and toward the sea) and two element groups with different geochemical behaviors (cations such as Cu, Zn, Ni, and oxyanions such as As and Mo) could be distinguished. It can be postulated, that the sea is mainly affected by the following: As, Mo, Cu, and Zn contamination, which were liberated from the oxidation zone from the tailings and mobilized through the tidal cycle, and by Cu and Zn from the subsurface waters flowing in the El Salado valley (up to 19 mg/L and 12 mg/L Zn, respectively), transported as chloro complexes at neutral pH.  相似文献   

8.
The solid-state speciation of arsenic (As), iron (Fe), and lead (Pb) was studied in the mine waste-derived fertilizer Ironite using X-ray absorption spectroscopy, M?ssbauer spectroscopy, and aging studies. Arsenic was primarily associated with ferrihydrite (60-70%), with the remainder found in arsenopyrite (30-40%). Lead was observed almost exclusively as anglesite (PbSO4), with <1% observed as galena (PbS). The identification of As in oxidized Fe oxides and Pb as PbSO4 is in disagreement with the dominant reduced phases previously reported and suggests As and Pb contained within the mine waste-derived product are more bioavailable than previously considered. Aging studies in solution result in Ironite granules separating into two distinct fractions, an orange oxide precipitate and a crystalline fraction with a metallic luster. The orange oxide fraction contained As adsorbed/precipitated with ferrihydrite that is released into solution when allowed to equilibrate with water. The fraction with a metallic luster contained pyrite and arsenopyrite. A complete breakdown of arsenopyrite was observed in Ironite aged for 1 month in buffered deionized water. The observations from this study indicate As and Pb exist as oxidized phases that likely develop from the beneficiation and processing of mine tailings for commercial sale. The potential release of As and Pb has important implications for water quality standards and human health. Of particular concern is the quantity of As released from mine waste-derived products due to the new As regulation applied in 2006, limiting As levels to 10 microg L(-1) in drinking water.  相似文献   

9.
The accumulation and behavior of arsenic at the redox interface of Fe-rich sediments is strongly influenced by Fe(III) precipitate mineralogy, As speciation, and pH. In this study, we examined the behavior of Fe and As during aeration of natural groundwater from the intertidal fringe of a wetland being remediated by tidal inundation. The groundwater was initially rich in Fe(2+) (32 mmol L(-1)) and As (1.81 μmol L(-1)) with a circum-neutral pH (6.05). We explore changes in the solid/solution partitioning, speciation and mineralogy of Fe and As during long-term continuous groundwater aeration using a combination of chemical extractions, SEM, XRD, and synchrotron XAS. Initial rapid Fe(2+) oxidation led to the formation of As(III)-bearing ferrihydrite and sorption of >95% of the As(aq) within the first 4 h of aeration. Ferrihydrite transformed to schwertmannite within 23 days, although sorbed/coprecipitated As(III) remained unoxidized during this period. Schwertmannite subsequently transformed to jarosite at low pH (2-3), accompanied by oxidation of remaining Fe(2+). This coincided with a repartitioning of some sorbed As back into the aqueous phase as well as oxidation of sorbed/coprecipitated As(III) to As(V). Fe(III) precipitates formed via groundwater aeration were highly prone to reductive dissolution, thereby posing a high risk of mobilizing sorbed/coprecipitated As during any future upward migration of redox boundaries. Longer-term investigations are warranted to examine the potential pathways and magnitude of arsenic mobilization into surface waters in tidally reflooded wetlands.  相似文献   

10.
The risk posed from incidental ingestion to humans of arsenic-contaminated soil may depend on sorption of arsenate (As(V)) to oxide surfaces in soil. Arsenate sorbed to ferrihydrite, a model soil mineral, was used to simulate possible effects on ingestion of soil contaminated with As-(V) sorbed to Fe oxide surfaces. Arsenate sorbed to ferrihydrite was placed in a simulated gastrointestinal tract (in vitro) to ascertain the bioaccessibility of As(V) and changes in As(V) surface speciation caused by the gastrointestinal system. The speciation of As was determined using extended X-ray absorption fine structure (EXAFS) analysis and X-ray absorption near-edge spectroscopy (XANES). The As(V) adsorption maximum was found to be 93 mmol kg(-1). The bioaccessible As(V) ranged from 0 to 5%, and surface speciation was determined to be binuclear bidentate with no changes in speciation observed post in vitro. Arsenate concentration in the intestine was not constant and varied from 0.001 to 0.53 mM for the 177 mmol kg(-1) As(V) treated sample. These results suggest that the bioaccessibility of As(V) is related to the As(V) concentration, the As(V) adsorption maximum, and that multiple measurements of dissolved As(V) in the intestinal phase may be needed to calculate the bioaccessibility of As(V) adsorbed to ferrihydrite.  相似文献   

11.
A compartmented soil-glass bead culture system was used to investigate characteristics of iron plaque and arsenic accumulation and speciation in mature rice plants with different capacities of forming iron plaque on their roots. X-ray absorption near-edge structure spectra and extended X-ray absorption fine structure were utilized to identify the mineralogical characteristics of iron plaque and arsenic sequestration in plaque on the rice roots. Iron plaque was dominated by (oxyhydr)oxides, which were composed of ferrihydrite (81-100%), with a minor amount of goethite (19%) fitted in one of the samples. Sequential extraction and XANES data showed that arsenic in iron plaque was sequestered mainly with amorphous and crystalline iron (oxyhydr)oxides, and that arsenate was the predominant species. There was significant variation in iron plaque formation between genotypes, and the distribution of arsenic in different components of mature rice plants followed the following order: iron plaque > root > straw > husk > grain for all genotypes. Arsenic accumulation in grain differed significantly among genotypes. Inorganic arsenic and dimethylarsinic acid (DMA) were the main arsenic species in rice grain for six genotypes, and there were large genotypic differences in levels of DMA and inorganic arsenic in grain.  相似文献   

12.
Zinc is one of the most widespread trace metals (TMs) in Earth surface environments and is the most concentrated TM in the downstream section of the Seine River (France) due to significant anthropogenic input from the Paris conurbation. In order to better identify the sources and cycling processes of Zn in this River basin, we investigated seasonal and spatial variations of Zn speciation in suspended particulate matter (SPM) in the oxic water column of the Seine River from upstream to downstream of Paris using synchrotron-based extend X-ray absorption fine structure (EXAFS) spectroscopy at the Zn K-edge. First-neighbor contributions to the EXAFS were analyzed in SPM samples, dried and stored under a dry nitrogen atmosphere or under an ambient oxygenated atmosphere. We found a sulfur first coordination environment around Zn (in the form of amorphous zinc sulfide) in the raw SPM samples stored under dry nitrogen vs an oxygen first coordination environment around Zn in the samples stored in an oxygenated atmosphere. These findings are supported by scanning electron microscopy and energy dispersive X-ray spectrometry observations. Linear combination fitting of the EXAFS data for SPM samples, using a large set of EXAFS spectra of Zn model compounds, indicates dramatic changes in the Zn speciation from upstream to downstream of Paris, with amorphous ZnS particles becoming dominant dowstream. In contrast, Zn species associated with calcite (either adsorbed or incorporated in the structure) are dominant upstream. Other Zn species representing about half of the Zn pool in the SPM consist of Zn-sorbed on iron oxyhydroxides (ferrihydrite and goethite) and, to a lesser extent, Zn-Al layered double hydroxides, Zn incorporated in dioctahedral layers of clay minerals and Zn sorbed to amorphous silica. Our results highlight the importance of preserving the oxidation state in TM speciation studies when sampling suspended matter, even in an oxic water column.  相似文献   

13.
Knowledge of arsenic redox kinetics is crucial for understanding the impact and fate of As in the environment and for optimizing As removal from drinking water. Rapid oxidation of As(III) adsorbed to ferrihydrite (FH) in the presence of hydrogen peroxide (H2O2) might be expected for two reasons. First, the adsorbed As(III) is assumed to be oxidized more readily than the undissociated species in solution. Second, catalyzed decomposition of H2O2 on the FH surface might also lead to As(III) oxidation. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy was used to monitor the oxidation of adsorbed As(III) on the FH surface in situ. No As(III) oxidation within minutes to hours was observed prior to H2O2 addition. Initial pseudo-first-order oxidation rate coefficients for adsorbed As(III), determined at H2O2 concentrations between 8.4 microM and 8.4 mM and pH values from 4 to 8, increased with the H2O2 concentration according to the equation log k(ox) (min(-1)) = 0.17 + 0.50 log [H2O] (mol/L), n = 21, r2 = 0.87. Only a weak pH dependence of log k(ox) was observed (approximately 0.04 logarithm unit increase per pH unit). ATR-FTIR experiments with As(III) adsorbed onto amorphous aluminum hydroxide showed that Fe was necessary to induce As(III) oxidation by catalytic H2O2 decomposition. Supplementary As(III) oxidation experiments in FH suspensions qualitatively confirmed the findings from the in situ ATR-FTIR experiments. Our results indicate that the catalyzed oxidation of As(III) by H2O2 on the surface of iron (hydr)oxides might be a relevant reaction pathway in environmental systems such as surface waters, as well as in engineered systems for As removal from water.  相似文献   

14.
Carbonate dramatically affects the adsorption of uranium (U(VI)) onto iron hydroxides and its mobility in the natural environment. Batch tests, zeta potential measurements, and Fourier transform infrared (FTIR) spectroscopic studies were utilized to characterize the nature of U(VI) adsorption on ferrihydrite. Adsorption isotherms demonstrated that carbonate had a negative effect on U(VI) adsorption on ferrihydrite at pH > 6. Zeta potential measurements indicated that U(VI) was adsorbed as a cationic species (SO-UO2+) in the absence of carbonate and as anionic U(VI) complexes in the presence of carbonate at neutral pH. FTIR spectroscopic measurement of adsorbed U(VI) suggested that it was retained as uranyl carbonate complexes in the presence of carbonate. An increase in carbonate concentration caused a shift in the antisymmetric stretching vibration of the uranyl (UO2(2+)) U-O bond toward lower wavenumbers, which indicated an increasing carbonate effect in the adsorbed uranyl carbonate complexes. The adsorbed U(VI) species were successfully incorporated into a surface complexation model to describe the adsorption of U(VI) by ferrihydrite from artificial solutions and contaminated water.  相似文献   

15.
The oxidation state, speciation, and distribution of Fe are critical determinants of Fe reactivity in natural and engineered environments. However, it is challenging to follow dynamic changes in Fe speciation in environmental systems during progressive fluid-mineral interactions. Two common geological and aquifer materials-basalt and Fe(III) oxides-were incubated with saline fluids at 55 °C under highly reducing conditions maintained by the presence of Fe(0). We tracked changes in Fe speciation after 48 h (incipient water-rock reaction) and 10 months (extensive water-rock interaction) using synchrotron-radiation μXRF maps collected at multiple energies (ME) within the Fe K-edge. Immediate PCA analysis of the ME maps was used to optimize μXANES analyses; in turn, refitting the ME maps with end-member XANES spectra enabled us to detect and spatially resolve the entire variety of Fe-phases present in the system. After 48 h, we successfully identified and mapped the major Fe-bearing components of our samples (Fe(III) oxides, basalt, and rare olivine), as well as small quantities of incipient brucite associated with olivine. After 10 months, the Fe(III)-oxides remained stable in the presence of Fe(0), whereas significant alteration of basalt to minnesotaite and chlinochlore had occurred, providing new insights into heterogeneous Fe speciation in complex geological media under highly reducing conditions.  相似文献   

16.
The distribution of low molecular weight carboxylic acids (LMWCA) was investigated in pore water profiles from two porphyry copper tailings impoundments in Chile (Piuquenes at La Andina and Cauquenes at El Teniente mine). The objectives of this study were (1) to determine the distribution of LMWCA, which are interpreted to be the metabolic byproducts of the autotroph microbial community in this low organic carbon system, and (2) to infer the potential role of these acids in cycling of Fe and other elements in the tailings impoundments. The speciation and mobility of iron, and potential for the release of H+ via hydrolysis of the ferric iron, are key factors in the formation of acid mine drainage in sulfidic mine wastes. In the low-pH oxidation zone of the Piuquenes tailings, Fe(III) is the dominant iron species and shows high mobility. LMWCA, which occur mainly between the oxidation front down to 300 cm below the tailings surface at both locations (e.g., max concentrations of 0.12 mmol/L formate, 0.17 mmol/L acetate, and 0.01 mmol/L pyruvate at Piuquenes and 0.14 mmol/L formate, 0.14 mmol/L acetate, and 0.006 mmol/L pyruvate at Cauquenes), are observed at the same location as high Fe concentrations (up to 71.2 mmol/L Fe(II) and 16.1 mmol/L Fe(III), respectively). In this zone, secondary Fe(III) hydroxides are depleted. Our data suggest that LMWCA may influence the mobility of iron in two ways. First, complexation of Fe(III), through formation of bidentate Fe(III)-LMWCA complexes (e.g., pyruvate, oxalate), may enhance the dissolution of Fe(III) (oxy)hydroxides or may prevent precipitation of Fe(III) (oxy)hydroxides. Soluble Fe(III) chelate complexes which may be mobilized downward and convert to Fe(II) by Fe(III) reducing bacteria. Second, monodentate LMWCA (e.g., acetate and formate) can be used by iron-reducing bacteria as electron donors (e.g., Acidophilum spp.), with ferric iron as the electron acceptor. These processes may, in part, explain the low abundances of secondary Fe(III) hydroxide precipitates below the oxidation front and the high concentrations of Fe(II) observed in the pore waters of some low-sulfide systems. The reduction of Fe(III) and the subsequent increase of iron mobility and potential acidity transfer (Fe(II) oxidation can result in the release of H+ in an oxic environment) should be taken in account in mine waste management strategies.  相似文献   

17.
Studies have examined partitioning of trace metals onto natural particles to better understand the fate and transport of trace metals in the environment, but few studies have compared model predictions with field results. We evaluate the application of an empirical modeling approach, using surface complexation parameters available in the literature, to complex natural systems. In this work, the equilibrium speciation computer program PHREEQC was used along with the diffuse double-layer surface complexation model to simulate metal removal onto natural oxide particles formed during the mixing of acid rock drainage with ambient surface water. End-member solutions sampled in the Coeur d'Alene (CdA) Mining District in September 1999 from the Bunker Hill Mine and the South Fork Coeur d'Alene (SFCdA) River were filtered and mixed in several ratios. Solution chemistry was determined for end-members and mixed solutions, and X-ray diffraction (XRD) was used to determine the mineralogy of precipitate phases. Predicted amounts of Fe precipitates were in good agreement with measured values for particulate Fe. Surface area and reactive site characteristics were used along with surface complexation constants for ferrihydrite (Dzombak, D. A.; Morel, F. M. M. Surface Complexation Modeling: Hydrous Ferric Oxide; John Wiley & Sons: New York, 1990) to predict ion sorption as a function of mixing fraction. Comparisons of model predictions with field results indicate that Pb and Cu sorption are predicted well by the model, while As, Mo, and Sb sorption are less well-predicted. Additional comparisons with particulate metal and Fe data collected from the CdA Mining District in 1996 and 1997 suggest that sorption on particulate Fe, including amorphous iron oxides and schwertmannite, may be described using universal model parameters.  相似文献   

18.
Understanding in situ metal surface speciation on mineral surfaces is critical to predicting the natural attenuation of metals in the subsurface environment. In this study, we have demonstrated the novel Ni K-edge X-ray absorption spectroscopy (XAS) measurements needed to understand Ni(ll) surface speciation in three synthetic iron oxyhydroxides (ferrihydrite, goethite, and hematite). The adsorption of Ni gradually increases with increasing pH from 5 to 8, and the adsorption edge appears at near the point of zero salt effect (PZSE) of the solids. The results of XAS analysis indicate four different Ni inner-sphere surface species are present. While total Ni surface species in hematite at pH 6.85 surfaces consist of approximately 63% face-sharing (interatomic distance of Ni-Fe (R(Ni-Fe)) approximately 2.9 A) and approximately 37% corner-sharing (R(Ni-Fe) approximately 4.0 A) surface species on iron octahedra, a combination of two different edge-sharing (between NiO6 and FeO6 octahedra, in chains or in rows) and corner-sharing surface species are observed in goethite and ferrihydrite at pH 5.09-6.89. In ferrihydrite, approximately 70% of surface species are edge-sharing surface species (in chains) (R(Ni-Fe) approximately 3.0 A), followed by approximately 30% of edge-sharing species (in rows) (R(Ni-Fe) approximately 3.2 A) and approximately 3-5% of corner-sharing surface species (R(Ni-Fe) approximately 4.0 A). Goethite contains approximately 54% edge-sharing (R(Ni-Fe) approximately 3.0 A), approximately 26% edge-sharing (R(Ni-Fe) approximately 3.2 A), and 20% corner-sharing surface species. These findings indicate that the reactivity and surface speciation of Ni are sensitive to the crystallinity of iron oxyhydroxides. The spectroscopic evidence for multi-Ni surface speciation should be factored into predictions of the transport of Ni in soil-water environments.  相似文献   

19.
Persistent cyanide species in soil are mainly iron-cyanide (Fe-CN) complexes. They originate from anthropogenic inputs of compounds such as Fe4[Fe(II)(CN)6]3 in deposited gas-purifier wastes (GPW) or K2Zn3[Fe(II)(CN)6]2 in deposited blast-furnace sludge (BFSI). Fe-CN species in de-inking sludge (DIS) and sewage farm soils (SF) are still unknown. We investigated 35 soil and waste samples from 15 European sites and five synthesized Fe-CN-containing compounds by Fourier transform infrared spectroscopy. Furthermore, we determined the contents of total and adsorbed CN and pH. In all samples (pH 2.2-9.5), adsorbed Fe-CN complexes were negligible. In GPW and DIS samples, Fe4[Fe(II)(CN)6]3 and KFe[FeII(CN)6] were the only Fe-CN compounds (total CN contents 0.4-449 g kg(-1)). Several BFSI samples were free of CN. The spectra of other BFSI samples partially indicated dissolution of the characteristic compound K2Zn3[Fe(II)(CN)6]2, resulting in a loss of CN (contents < 12.3 g kg(-1)). Distinctive changes in BFSI with respect to CN speciation occurred within relatively short periods, <20 years. Dissolution of K2Zn3[Fe(II)(CN)6]2 was followed by dissociation of free CN from [Fe(CN)6](3-/4-) and adsorption of [Fe(II)(CN)6](4-) on organic surfaces. In DIS and SF samples, Fe4[Fe(11)(CN)6]3 and K2Zn3[Fe(II)(CN)6]2 (SF only) were identified.  相似文献   

20.
Reddish brown flocs form along the edge of the Coeur d'Alene River when porewater drains into river water during the annual lowering of water level in the basin. The precipitates are efficient scavengers of dissolved elements and have characteristics that may make metals associated with them bioavailable. This work characterizes the geochemistry of the porewater and models the formation and composition of the flocs. Porewater is slightly acidic, has suboxic to anoxic characteristics, tends to have higher alkalinity, and contains elevated concentrations of many constituents relative to river water. Laboratory mixing experiments involving porewater and river water were done to produce the precipitates. Thermodynamic predictions using PHREEQC indicate that predicted amounts of ferrihydrite and gibbsite agree with removal of Fe and Al. Predictions of element removal by adsorption onto ferrihydrite are consistent with observed removal using a combination of surface complexation constants for the generalized two-layer model (As and Se), alternative surface constants derived from experiments at high sorbate-to-sorbent ratios (Cd, Co, Cu, Ni, Pb, and Zn), and adjusted surface constants to fit experimental data (Cr, Mo, and Sb). This new set of surface complexation constants needs further testing in other contaminated systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号