首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanostructured thin films of undoped and Ag-doped cuprous oxide were deposited on indium tin oxide-coated glass substrate using simple spray pyrolysis method for their use as photocathode in photoelectrochemical (PEC) cell for solar energy based water splitting. Combination of experiments and first-principles density functional theory based calculations was used to determine and understand the effect of Ag substitution on electronic structure and PEC performance. Thin films were characterized using XRD, FE-SEM, UV–Vis spectroscopy and PEC measurements. The results of DFT calculations show that the top of valence band and bottom of conduction band of undoped Cu2O lie at Г point of brillouin zone, respectively, suggesting that pure Cu2O is a direct band gap material. Minimal changes appear in the band gap and band gap energies in the Ag-doped Cu2O system, keeping it still a direct band gap material. A defect band appearance can be seen between ?4 and ?5 eV in the valence band consisting mainly of Ag 4d states and can be explained by a stronger interaction between the Ag 4d and O 2p, due to the larger Ag size. Ag-doped samples exhibit improved conductivity and fourfold increase in photocurrent density with respect to undoped samples.  相似文献   

2.
Qian F  Wang G  Li Y 《Nano letters》2010,10(11):4686-4691
We report a self-biased, solar-driven microbial photoelectrochemical cell (solar MPC) that can produce sustainable energy through coupling the microbial catalysis of biodegradable organic matter with solar energy conversion. The solar MPC consists of a p-type cuprous oxide nanowire-arrayed photocathode and an electricigen (Shewanella oneidensis MR-1)-colonizing anode, which can harvest solar energy and bioenergy, respectively. The photocathode and bioanode are interfaced by matching the redox potentials of bacterial cells and the electronic bands of semiconductor nanowires. We successfully demonstrated substantial current generation of 200 μA from the MPC device based on the synergistic effect of the bioanode (projected area of 20 cm2) and photocathode (projected area of 4 cm2) at zero bias under white light illumination of 20 mW/cm2. We identified the transition of rate-limiting step from the photocathode to the bioanode with increasing light intensities. The solar MPC showed self-sustained operation for more than 50 h in batch-fed mode under continuous light illumination. The ability to tune the synergistic effect between microbial cells and semiconductor nanowire systems could open up new opportunities for microbial/nanoelectronic hybrid devices with unique applications in energy conversion, environmental protection, and biomedical research.  相似文献   

3.
Sun K  Madsen K  Andersen P  Bao W  Sun Z  Wang D 《Nanotechnology》2012,23(19):194013
We report a systematic study of Si|ZnO and Si|ZnO| metal photocathodes for effective photoelectrochemical cells and hydrogen generation. Both ZnO nanocrystalline thin films and vertical nanowire arrays were studied. Si|ZnO electrodes showed increased cathodic photocurrents due to improved charge separation by the formation of a p/n junction, and Si|ZnO:Al (n(+)-ZnO) and Si|ZnO(N(2)) (thin films prepared in N(2)/Ar gas) lead to a further increase in cathodic photocurrents. Si|ZnONW (nanowire array) photocathodes dramatically increased the photocurrents and thus photoelectrochemical conversion efficiency due to the enhanced light absorption and enlarged surface area. The ZnO film thickness and ZnO nanowire length were important to the enhancements. A thin metal coating on ZnO showed increased photocurrent due to a catalyzed hydrogen evolution reaction and Ni metal showed comparable catalytic activities to those of Pt and Pd. Moreover, photoelectrochemical instability of Si|ZnO electrodes was minimized by metal co-catalysts. Our results indicate that the metal and ZnO on p-type Si serve as co-catalysts for photoelectrochemical water splitting, which can provide a possible low-cost and scalable method to fabricate high efficiency photocathodes for practical applications in clean solar energy harvesting.  相似文献   

4.
Oh I  Kye J  Hwang S 《Nano letters》2012,12(1):298-302
Herein we report that silicon nanowires (SiNWs) fabricated via metal-catalyzed electroless etching yielded a photoelectrochemical hydrogen generation performance superior to that of a planar Si, which is attributed to a lower kinetic overpotential due to a higher surface roughness, favorable shift in the flat-band potential, and light-trapping effects of the SiNW surface. The SiNW photocathode yielded a photovoltage of 0.42 V, one of the highest values ever reported for hydrogen generation on p-type Si/electrolyte interfaces.  相似文献   

5.
In terms of photoelectrochemical(PEC)hydrogen evolution,substantial challenge still remains regarding the controllable fabrication of quantum dots(QDs)-sensitized photocathodes with enhanced visible-light absorption,efficient charge carrier separation,and directional migration at the electrode interface.In this work,the CdTe/CdSe QDs-sensitized photocathodes were delicately constructed on p-type NiO-coated indium tin oxide(ITO)electrodes by spin-coating approach.The resulting co-sensitized photocathode exhibits a favorable pseudo-Type Ⅱ energetic band alignment that combines the advantages of strong light absorption of constituent QDs as well as the effective and oriented charge separation and migration.Upon green LED light illumination,the photogenerated electrons could be effectively transferred to a tetra-nickel-substituted polyoxometalate catalyst for hydrogen production while photogenerated holes will be scavenged at the NiO/ITO electrode.Under minimally optimized conditions,the pseudo-Type Ⅱ CdTe/CdSe-sensrtized photocathode yields a photcx:urrent density of over 100 pA/cm2 and a Faradaic efficiency of?100%,which is among one of the most efficient QDs-based photocathode systems coupling with Ni-substituted polyoxometalate catalyst for photoelectrochemical hydrogen generation.  相似文献   

6.
It is of great significance to explore new preparation methods and control the morphology and proportion of metal ions for the photoelectrochemical (PEC) water splitting of ternary sulfide photoelectrode. In this paper, the network-like CuInS2 film photocathodes were firstly prepared by hydrothermal growth method. The effects of different [Cu2+]/[In3+] molar ratios and concentrations of growth solution on CuInS2 films were investigated in detail. The mechanism of the synthetic reaction was studied. The best PEC photocurrent density of the CuInS2 film photoelectrode is ??0.81 mA/cm2 at ??0.6 V versus RHE when the [Cu2+]/[In3+] molar ratio is 0.4, the growth solution concentration is 8 mmol/L CuCl2·2H2O, 20 mmol/L InCl3·4H2O and 60 mmol/L C2H5NS. For the purpose of further improving photoelectrochemical properties of CuInS2 thin films, the Pt co-catalyst was loaded. The synthesized CuInS2–Pt thin film yielded a photocurrent density for ??1.92 mA/cm2 at ??0.6 V versus RHE due to the fast photogenerated electrons capture ability of Pt co-catalyst. The method of constructing photoelectrode film and the co-catalyst mechanism contributes to a sensational way for PEC water splitting of sulfide.  相似文献   

7.
8.
Sn-doped hematite nanostructures for photoelectrochemical water splitting   总被引:1,自引:0,他引:1  
Ling Y  Wang G  Wheeler DA  Zhang JZ  Li Y 《Nano letters》2011,11(5):2119-2125
We report on the synthesis and characterization of Sn-doped hematite nanowires and nanocorals as well as their implementation as photoanodes for photoelectrochemical water splitting. The hematite nanowires were prepared on a fluorine-doped tin oxide (FTO) substrate by a hydrothermal method, followed by high temperature sintering in air to incorporate Sn, diffused from the FTO substrate, as a dopant. Sn-doped hematite nanocorals were prepared by the same method, by adding tin(IV) chloride as the Sn precursor. X-ray photoelectron spectroscopy analysis confirms Sn(4+) substitution at Fe(3+) sites in hematite, and Sn-dopant levels increase with sintering temperature. Sn dopant serves as an electron donor and increases the carrier density of hematite nanostructures. The hematite nanowires sintered at 800 °C yielded a pronounced photocurrent density of 1.24 mA/cm(2) at 1.23 V vs RHE, which is the highest value observed for hematite nanowires. In comparison to nanowires, Sn-doped hematite nanocorals exhibit smaller feature sizes and increased surface areas. Significantly, they showed a remarkable photocurrent density of 1.86 mA/cm(2) at 1.23 V vs RHE, which is approximately 1.5 times higher than that of the nanowires. Ultrafast spectroscopy studies revealed that there is significant electron-hole recombination within the first few picoseconds, while Sn doping and the change of surface morphology have no major effect on the ultrafast dynamics of the charge carriers on the picosecond time scales. The enhanced photoactivity in Sn-doped hematite nanostructures should be due to the improved electrical conductivity and increased surface area.  相似文献   

9.
Qiu Y  Yan K  Deng H  Yang S 《Nano letters》2012,12(1):407-413
A photoanode based on ZnO nanotetrapods, which feature good vectorial electron transport and network forming ability, has been developed for efficient photoelectrochemical water splitting. Two strategies have been validated in significantly enhancing light harvesting. The first was demonstrated through a newly developed branch-growth method to achieve secondary and even higher generation branching of the nanotetrapods. Nitrogen-doping represents the second strategy. The pristine ZnO nanotetrapod anode yielded a photocurrent density higher than those of the corresponding nanowire devices reported so far. This photocurrent density was significantly increased for the new photoanode architecture based on the secondary branched ZnO nanotetrapods. After N-doping, the photocurrent density enjoyed an even more dramatic enhancement to 0.99 mA/cm(2) at +0.31 V vs Ag/AgCl. The photocurrent enhancement is attributed to the greatly increased roughness factor for boosting light harvesting associated with the ZnO nanotetrapod branching, and the increased visible light absorption due to the N-doping induced band gap narrowing of ZnO.  相似文献   

10.
11.
Wang G  Wang H  Ling Y  Tang Y  Yang X  Fitzmorris RC  Wang C  Zhang JZ  Li Y 《Nano letters》2011,11(7):3026-3033
We report the first demonstration of hydrogen treatment as a simple and effective strategy to fundamentally improve the performance of TiO(2) nanowires for photoelectrochemical (PEC) water splitting. Hydrogen-treated rutile TiO(2) (H:TiO(2)) nanowires were prepared by annealing the pristine TiO(2) nanowires in hydrogen atmosphere at various temperatures in a range of 200-550 °C. In comparison to pristine TiO(2) nanowires, H:TiO(2) samples show substantially enhanced photocurrent in the entire potential window. More importantly, H:TiO(2) samples have exceptionally low photocurrent saturation potentials of -0.6 V vs Ag/AgCl (0.4 V vs RHE), indicating very efficient charge separation and transportation. The optimized H:TiO(2) nanowire sample yields a photocurrent density of ~1.97 mA/cm(2) at -0.6 V vs Ag/AgCl, in 1 M NaOH solution under the illumination of simulated solar light (100 mW/cm(2) from 150 W xenon lamp coupled with an AM 1.5G filter). This photocurrent density corresponds to a solar-to-hydrogen (STH) efficiency of ~1.63%. After eliminating the discrepancy between the irradiance of the xenon lamp and solar light, by integrating the incident-photon-to-current-conversion efficiency (IPCE) spectrum of the H:TiO(2) nanowire sample with a standard AM 1.5G solar spectrum, the STH efficiency is calculated to be ~1.1%, which is the best value for a TiO(2) photoanode. IPCE analyses confirm the photocurrent enhancement is mainly due to the improved photoactivity of TiO(2) in the UV region. Hydrogen treatment increases the donor density of TiO(2) nanowires by 3 orders of magnitudes, via creating a high density of oxygen vacancies that serve as electron donors. Similar enhancements in photocurrent were also observed in anatase H:TiO(2) nanotubes. The capability of making highly photoactive H:TiO(2) nanowires and nanotubes opens up new opportunities in various areas, including PEC water splitting, dye-sensitized solar cells, and photocatalysis.  相似文献   

12.
Journal of Materials Science: Materials in Electronics - Sacrificial template-assisted iron(III) oxide (Fe2O3) nanofibers have been prepared by simple electrospinning process on the surface of...  相似文献   

13.
Du  Nana  Wang  Chengming  Long  Ran  Xiong  Yujie 《Nano Research》2017,10(9):3228-3237
Nano Research - The development of catalysts with high activity and durability for the cathodic oxygen reduction reaction (ORR) in both alkaline and acidic media is important for improving the...  相似文献   

14.
Hexagonal zinc indium sulfide coupled g-C3N4 (H-ZnIn2S4/g-C3N4) nanocomposites were synthesized using chemisorption method and its performance towards photoelectrochemical water splitting activity was studied. The H-ZnIn2S4/g-C3N4 (H-ZIS/CN) nanocomposites exhibited ∼ 1.9 times enhanced photoelectrochemical performance as compared to the H-ZnIn2S4. The enhancement in the PEC water splitting activity of H-ZIS/CN nanocomposite is ascribed to the formation of type-II heterojunction which resulted in improved separation of photogenerated charge carriers and faster transfer of charges at the photoelectrode/electrolyte interface. The electrochemical impedance study and Mott-Schottky supported these results. Moreover, during photoelectrochemical reactions, H-ZIS/CN nanocomposites showed tremendous stability under visible light. A potential mechanism of the enhanced photoelectrochemical activity of H-ZIS/CN nanocomposites was proposed and endorsed by the PEC results. This study demonstrates that establishing a heterostructure system by coupling a ternary chalcogenide semiconductor with a conducting polymer is an effective strategy for PEC water splitting applications.  相似文献   

15.
16.
《Materials Research Bulletin》2013,48(11):4797-4803
Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective and environmentally friendly approach. Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UV–vis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film. This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded.  相似文献   

17.
The electronic and electrochemical properties of vapour-grown single-crystal PdO are reported; this PdO is a p-type semiconductor with a bandgap of about 0.8 eV, corresponding to a strongly forbidden d-d transition. A higher-energy transition, with a threshold near 2.2eV, is assigned to 0 2p — Pd 4d charge transfer. The flat-band potential PdO appears to be 0.7 ± 0.1V (NHE) in 0.5M H2SO4, but the photoresponse of the crystals is poor owing both to unfavourable bulk properties and to feeble faradaic kinetics for hydrogen evolution. The cathodic decomposition of PdO to palladium metal is a strongly competing reaction under potential biases that invert the surface region.  相似文献   

18.
We fabricated three-dimensional copper oxide structure by holographic lithography and electroless deposition. A five-beam interference pattern defined a woodpile structure of SU-8. The surface modification of SU-8 structure was achieved by multilayer coating of polyelectrolyte, which is critical for activating the surface for the reduction of copper. Copper was deposited onto the surface of the structure by electroless deposition, and subsequent calcinations removed the SU-8 structure and simultaneously oxidized the copper into copper oxide. The porous copper oxide structure was used as a photoelectrochemical electrode. Because of the highly porous structure, our structure showed higher photocurrent efficiency.  相似文献   

19.
Wang H  Quan X  Zhang Y  Chen S 《Nanotechnology》2008,19(6):065704
A single-step route was developed for the direct growth of tungsten oxide nanobelt arrays by heating a tungsten sheet without additional catalysts or reactants. X-ray diffraction and Raman analysis indicated that the tungsten oxide nanobelts were monoclinic. The surface photovoltage signal and photocurrent density of the tungsten oxide nanobelt arrays clearly suggested a high photoconversion ability. Further investigation demonstrated that the photoelectrocatalytic activity of the nanobelt arrays was higher than that of a tungsten oxide film when using phenol as the probe molecule.  相似文献   

20.
Journal of Materials Science - Photoelectrochemical (PEC) water splitting can be an efficient and economically feasible alternative for hydrogen production if easily processed photoelectrodes made...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号