共查询到20条相似文献,搜索用时 15 毫秒
1.
Shawn E. Gano John E. Renaud Jay D. Martin Timothy W. Simpson 《Structural and Multidisciplinary Optimization》2006,32(4):287-298
Many optimization methods for simulation-based design rely on the sequential use of metamodels to reduce the associated computational burden. In particular, kriging models are frequently used in variable fidelity optimization. Nevertheless, such methods may become computationally inefficient when solving problems with large numbers of design variables and/or sampled data points due to the expensive process of optimizing the kriging model parameters in each iteration. One solution to this problem would be to replace the kriging models with traditional Taylor series response surface models. Kriging models, however, were shown to provide good approximations of computer simulations that incorporate larger amounts of data, resulting in better global accuracy. In this paper, a metamodel update management scheme (MUMS) is proposed to reduce the cost of using kriging models sequentially by updating the kriging model parameters only when they produce a poor approximation. The scheme uses the trust region ratio (TR-MUMS), which is a ratio that compares the approximation to the true model. Two demonstration problems are used to evaluate the proposed method: an internal combustion engine sizing problem and a control-augmented structural design problem. The results indicate that the TR-MUMS approach is very effective; on the demonstration problems, it reduced the number of likelihood evaluations by three orders of magnitude compared to using a global optimizer to find the kriging parameters in every iteration. It was also found that in trust region-based method, the kriging model parameters need not be updated using a global optimizer—local methods perform just as well in terms of providing a good approximation without affecting the overall convergence rate, which, in turn, results in a faster execution time. 相似文献
2.
The increasing complexity of real-world optimization problems raises new challenges to evolutionary computation. Responding to these challenges, distributed evolutionary computation has received considerable attention over the past decade. This article provides a comprehensive survey of the state-of-the-art distributed evolutionary algorithms and models, which have been classified into two groups according to their task division mechanism. Population-distributed models are presented with master-slave, island, cellular, hierarchical, and pool architectures, which parallelize an evolution task at population, individual, or operation levels. Dimension-distributed models include coevolution and multi-agent models, which focus on dimension reduction. Insights into the models, such as synchronization, homogeneity, communication, topology, speedup, advantages and disadvantages are also presented and discussed. The study of these models helps guide future development of different and/or improved algorithms. Also highlighted are recent hotspots in this area, including the cloud and MapReduce-based implementations, GPU and CUDA-based implementations, distributed evolutionary multiobjective optimization, and real-world applications. Further, a number of future research directions have been discussed, with a conclusion that the development of distributed evolutionary computation will continue to flourish. 相似文献
3.
进化多目标优化设计满意解的模糊决策 总被引:3,自引:1,他引:3
文章提出了一种进化多目标优化满意解的模糊决策方法。首先,根据各个子目标满意度对所有pareto最优解的性能做出模糊评价,并在此基础上将整个pareto解集划分为若干个具有不同性能特征的类;然后根据决策者对目标的模糊偏好,从相应的类中选择最有代表性的个体作为最终的满意解。最后以两杆桁架多目标优化问题为例,说明了该方法的应用。 相似文献
4.
Robust optimization is a popular method to tackle uncertain optimization problems. However, traditional robust optimization can only find a single solution in one run which is not flexible enough for decision-makers to select a satisfying solution according to their preferences. Besides, traditional robust optimization often takes a large number of Monte Carlo simulations to get a numeric solution, which is quite time-consuming. To address these problems, this paper proposes a parallel double-level multiobjective evolutionary algorithm (PDL-MOEA). In PDL-MOEA, a single-objective uncertain optimization problem is translated into a bi-objective one by conserving the expectation and the variance as two objectives, so that the algorithm can provide decision-makers with a group of solutions with different stabilities. Further, a parallel evolutionary mechanism based on message passing interface (MPI) is proposed to parallel the algorithm. The parallel mechanism adopts a double-level design, i.e., global level and sub-problem level. The global level acts as a master, which maintains the global population information. At the sub-problem level, the optimization problem is decomposed into a set of sub-problems which can be solved in parallel, thus reducing the computation time. Experimental results show that PDL-MOEA generally outperforms several state-of-the-art serial/parallel MOEAs in terms of accuracy, efficiency, and scalability. 相似文献
5.
The use of surrogate models is a standard method for dealing with complex real-world optimization problems. The first surrogate models were applied to continuous optimization problems. In recent years, surrogate models gained importance for discrete optimization problems. This article takes this development into consideration. The first part presents a survey of model-based methods, focusing on continuous optimization. It introduces a taxonomy, which is useful as a guideline for selecting adequate model-based optimization tools. The second part examines discrete optimization problems. Here, six strategies for dealing with discrete data structures are introduced. A new approach for combining surrogate information via stacking is proposed in the third part. The implementation of this approach will be available in the open source R package SPOT2. The article concludes with a discussion of recent developments and challenges in continuous and discrete application domains. 相似文献
6.
A significant amount of research has been done on bilevel optimization problems both in the realm of classical and evolutionary optimization. However, the multiobjective extensions of bilevel programming have received relatively little attention from researchers in both the domains. The existing algorithms are mostly brute-force nested strategies, and therefore computationally demanding. In this paper, we develop insights into multiobjective bilevel optimization through theoretical progress made in the direction of parametric multiobjective programming. We introduce an approximated set-valued mapping procedure that would be helpful in the development of efficient evolutionary approaches for solving these problems. The utility of the procedure has been emphasized by incorporating it in a hierarchical evolutionary framework and assessing the improvements. Test problems with varying levels of complexity have been used in the experiments. 相似文献
7.
8.
Surrogate-assisted evolutionary optimization has proved to be effective in reducing optimization time, as surrogates, or meta-models can approximate expensive fitness functions in the optimization run. While this is a successful strategy to improve optimization efficiency, challenges arise when constructing surrogate models in higher dimensional function space, where the trade space between multiple conflicting objectives is increasingly complex. This complexity makes it difficult to ensure the accuracy of the surrogates. In this article, a new surrogate management strategy is presented to address this problem. A k-means clustering algorithm is employed to partition model data into local surrogate models. The variable fidelity optimization scheme proposed in the author's previous work is revised to incorporate this clustering algorithm for surrogate model construction. The applicability of the proposed algorithm is illustrated on six standard test problems. The presented algorithm is also examined in a three-objective stiffened panel optimization design problem to show its superiority in surrogate-assisted multi-objective optimization in higher dimensional objective function space. Performance metrics show that the proposed surrogate handling strategy clearly outperforms the single surrogate strategy as the surrogate size increases. 相似文献
9.
Christian Gagn Julie Beaulieu Marc Parizeau Simon Thibault 《Applied Soft Computing》2008,8(4):1439-1452
Lens system design provides ideal problems for evolutionary algorithms: a complex non-linear optimization task, often with intricate physical constraints, for which there is no analytical solutions. This paper demonstrates, through the use of two evolution strategies, namely non-isotropic Self-Adaptive evolution strategy (SA-ES) and Covariance Matrix Adaptation evolution strategy (CMA-ES), as well as multiobjective Non-Dominated Sort Genetic Algorithm 2 (NSGA-II) optimization, the human competitiveness of an approach where an evolutionary algorithm is hybridized with a local search algorithm to solve both a classic benchmark problem, and a real-world problem. 相似文献
10.
In this paper, we present a genetic algorithm with a very small population and a reinitialization process (a microgenetic
algorithm) for solving multiobjective optimization problems. Our approach uses three forms of elitism, including an external
memory (or secondary population) to keep the nondominated solutions found along the evolutionary process. We validate our
proposal using several engineering optimization problems taken from the specialized literature and compare our results with
respect to two other algorithms (NSGA-II and PAES) using three different metrics. Our results indicate that our approach is
very efficient (computationally speaking) and performs very well in problems with different degrees of complexity. 相似文献
11.
In the bioinformatics community, it is really important to find an accurate and simultaneous alignment among diverse biological sequences which are assumed to have an evolutionary relationship. From the alignment, the sequences homology is inferred and the shared evolutionary origins among the sequences are extracted by using phylogenetic analysis. This problem is known as the multiple sequence alignment (MSA) problem. In the literature, several approaches have been proposed to solve the MSA problem, such as progressive alignments methods, consistency-based algorithms, or genetic algorithms (GAs). In this work, we propose a Hybrid Multiobjective Evolutionary Algorithm based on the behaviour of honey bees for solving the MSA problem, the hybrid multiobjective artificial bee colony (HMOABC) algorithm. HMOABC considers two objective functions with the aim of preserving the quality and consistency of the alignment: the weighted sum-of-pairs function with affine gap penalties (WSP) and the number of totally conserved (TC) columns score. In order to assess the accuracy of HMOABC, we have used the BAliBASE benchmark (version 3.0), which according to the developers presents more challenging test cases representing the real problems encountered when aligning large sets of complex sequences. Our multiobjective approach has been compared with 13 well-known methods in bioinformatics field and with other 6 evolutionary algorithms published in the literature. 相似文献
12.
We consider the generalized biobjective traveling salesperson problem, where there are a number of nodes to be visited and each node pair is connected by a set of edges. The final route requires finding the order in which the nodes are visited (tours) and finding edges to follow between the consecutive nodes of the tour. We exploit the characteristics of the problem to develop an evolutionary algorithm for generating an approximation of nondominated points. For this, we approximate the efficient tours using approximate representations of the efficient edges between node pairs in the objective function space. We test the algorithm on several randomly-generated problem instances and our experiments show that the evolutionary algorithm approximates the nondominated set well. 相似文献
13.
《Expert systems with applications》2014,41(3):841-852
Dysarthria is a motor speech disorder caused by neurological injury of the motor component of the motor-speech system. Because it affects respiration, phonation, and articulation, it leads to different types of impairments in intelligibility, audibility, and efficiency of vocal communication. Speech Assistive Technology (SAT) has been developed with different approaches for dysarthric speech and in this paper we focus on the approach that is based on modeling of pronunciation patterns. We present an approach that integrates multiple pronunciation patterns for enhancement of dysarthric speech recognition. This integration is performed by weighting the responses of an Automatic Speech Recognition (ASR) system when different language model restrictions are set. The weight for each response is estimated by a Genetic Algorithm (GA) that also optimizes the structure of the implementation technique (Metamodels) which is based on discrete Hidden Markov Models (HMMs). The GA makes use of dynamic uniform mutation/crossover to further diversify the candidate sets of weights and structures to improve the performance of the Metamodels. To test the approach with a larger vocabulary than in previous works, we orthographically and phonetically labeled extended acoustic resources from the Nemours database of dysarthric speech. ASR tests on these resources with the proposed approach showed recognition accuracies over those obtained with standard Metamodels and a well used speaker adaptation technique. These results were statistically significant. 相似文献
14.
This paper proposes a new multiobjective evolutionary algorithm (MOEA) by extending the existing cat swarm optimization (CSO). It finds the nondominated solutions along the search process using the concept of Pareto dominance and uses an external archive for storing them. The performance of our proposed approach is demonstrated using standard test functions. A quantitative assessment of the proposed approach and the sensitivity test of different parameters is carried out using several performance metrics. The simulation results reveal that the proposed approach can be a better candidate for solving multiobjective problems (MOPs). 相似文献
15.
多目标优化与自适应惩罚的混合约束优化进化算法 总被引:5,自引:0,他引:5
提出一种多目标优化与自适应惩罚函数相结合的方法来处理约束优化问题.首先利用多目标优化方法提取当前群体中的主要信息;然后进一步用自适应惩罚函数选出最有价值的信息.将这种约束处理技术与一种基于群的算法生成器模型相结合,即可得到一种新的约束优化进化算法.选取10个标准测试函数对新算法的性能进行数值实验,结果表明了所提出方法的有效性和较强的稳健性,与其他尖端算法相比得到了相似或更优的结果. 相似文献
16.
《Expert systems with applications》2014,41(14):6274-6290
This paper revisits the classical Polynomial Mutation (PLM) operator and proposes a new probe guided version of the PLM operator designed to be used in conjunction with Multiobjective Evolutionary Algorithms (MOEAs). The proposed Probe Guided Mutation (PGM) operator is validated by using data sets from six different stock markets. The performance of the proposed PGM operator is assessed in comparison with the one of the classical PLM with the assistance of the Non-dominated Sorting Genetic Algorithm II (NSGAII) and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). The evaluation of the performance is based on three performance metrics, namely Hypervolume, Spread and Epsilon indicator. The experimental results reveal that the proposed PGM operator outperforms with confidence the performance of the classical PLM operator for all performance metrics when applied to the solution of the cardinality constrained portfolio optimization problem (CCPOP). We also calculate the True Efficient Frontier (TEF) of the CCPOP by formulating the CCPOP as a Mixed Integer Quadratic Program (MIQP) and we compare the relevant results with the approximate efficient frontiers that are generated by the proposed PGM operator. The results confirm that the PGM operator generates near optimal solutions that lie very close or in certain cases overlap with the TEF. 相似文献
17.
The Borg MOEA is a self-adaptive multiobjective evolutionary algorithm capable of solving complex, many-objective environmental systems problems efficiently and reliably. Water and environmental resources problems pose significant computational challenges due to their potential for large Pareto optimal sets, the presence of disjoint Pareto-optimal regions that arise from discrete choices, multi-modal suboptimal regions, and expensive objective function calculations. This work develops two large-scale parallel implementations of the Borg MOEA, the master–slave and multi-master Borg MOEA, and applies them to a highly challenging risk-based water supply portfolio planning problem. The performance and scalability of both implementations are compared on up to 16384 processors. The multi-master Borg MOEA is shown to scale efficiently on tens of thousands of cores while dramatically improving the reliability of attaining high-quality solutions. Our results dramatically expand the scale and scope of complex environmental systems that can be addressed using many-objective evolutionary optimization. 相似文献
18.
Recently, evolutionary algorithm based on decomposition (MOEA/D) has been found to be very effective and efficient for solving complicated multiobjective optimization problems (MOPs). However, the selected differential evolution (DE) strategies and their parameter settings impact a lot on the performance of MOEA/D when tackling various kinds of MOPs. Therefore, in this paper, a novel adaptive control strategy is designed for a recently proposed MOEA/D with stable matching model, in which multiple DE strategies coupled with the parameter settings are adaptively conducted at different evolutionary stages and thus their advantages can be combined to further enhance the performance. By exploiting the historically successful experience, an execution probability is learned for each DE strategy to perform adaptive adjustment on the candidate solutions. The proposed adaptive strategies on operator selection and parameter settings are aimed at improving both of the convergence speed and population diversity, which are validated by our numerous experiments. When compared with several variants of MOEA/D such as MOEA/D, MOEA/D-DE, MOEA/D-DE+PSO, ENS-MOEA/D, MOEA/D-FRRMAB and MOEA/D-STM, our algorithm performs better on most of test problems. 相似文献
19.
Eduardo Fernandez Edy Lopez Fernando Lopez Carlos A. Coello Coello 《Information Sciences》2011,181(1):44-56
Most current approaches in the evolutionary multiobjective optimization literature concentrate on adapting an evolutionary algorithm to generate an approximation of the Pareto frontier. However, finding this set does not solve the problem. The decision-maker still has to choose the best compromise solution out of that set. Here, we introduce a new characterization of the best compromise solution of a multiobjective optimization problem. By using a relational system of preferences based on a multicriteria decision aid way of thinking, and an outranked-based dominance generalization, we derive some necessary and sufficient conditions which describe satisfactory approximations to the best compromise. Such conditions define a lexicographic minimum of a bi-objective optimization problem, which is a map of the original one. The NOSGA-II method is a NSGA-II inspired efficient way of solving the resulting mapped problem. 相似文献
20.
带组织的粒子群优化同步并行算法 总被引:1,自引:0,他引:1
提出带组织的粒子群优化同步并行算法.粒子群优化算法是一种基于群体智能的演化算法,具有良好的优化性能.但由于群体的迅速收敛和多样性低,导致算法早熟收敛.带组织的粒子群优化同步并行算法虽然克服了早熟收敛问题,但无形中却增加了计算时间.结合已有的并行计算技术,构造出了该方法的同步并行计算算法,仿真试验证明并行算法具有更快的收敛速度. 相似文献