首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The efficient meta-heuristic techniques, called ant colony optimization, differential evolution and particle swarm optimization, inspired by the fundamental features of quantum systems, are presented in this paper. The proposed techniques are Quantum Inspired Ant Colony Optimization, Quantum Inspired Differential Evolution and Quantum Inspired Particle Swarm Optimization for Multi-level Colour Image Thresholding. These techniques find optimal threshold values at different levels of thresholding for colour images. A minimum cross entropy based thresholding method, called Li's method is employed as an objective (fitness) function for this purpose. The efficiency of the proposed techniques is exhibited computationally and visually on ten real life true colour images. Experiments with the composite DE (CoDE) method, the backtracking search optimization algorithm (BSA), the classical ant colony optimization (ACO), the classical differential evolution (DE) and the classical particle swarm optimization (PSO), have also been conducted subsequently along with the proposed techniques. Experimental results are described in terms of the best threshold value, fitness measure and the computational time (in seconds) for each technique at various levels. Thereafter, the accuracy and stability of the proposed techniques are established by computing the mean and standard deviation of fitness values for each technique. Moreover, the quality of thresholding for each technique is determined by computing the peak signal-to-noise ratio (PSNR) values at different levels. Afterwards, the statistical superiority of the proposed techniques is proved by incorporating Friedman test (statistical test) among different techniques. Finally, convergence curves for different techniques are presented for all test images to show the visual representation of results, which proves that the proposed Quantum Inspired Ant Colony Optimization technique outperforms all the other techniques.  相似文献   

2.
Multilevel thresholding is one of the most popular image segmentation techniques. In order to determine the thresholds, most methods use the histogram of the image. This paper proposes multilevel thresholding for histogram-based image segmentation using modified bacterial foraging (MBF) algorithm. To improve the global searching ability and convergence speed of the bacterial foraging algorithm, the best bacteria among all the chemotactic steps are passed to the subsequent generations. The optimal thresholds are found by maximizing Kapur's (entropy criterion) and Otsu's (between-class variance) thresholding functions using MBF algorithm. The superiority of the proposed algorithm is demonstrated by considering fourteen benchmark images and compared with other existing approaches namely bacterial foraging (BF) algorithm, particle swarm optimization algorithm (PSO) and genetic algorithm (GA). The findings affirmed the robustness, fast convergence and proficiency of the proposed MBF over other existing techniques. Experimental results show that the Otsu based optimization method converges quickly as compared with Kapur's method.  相似文献   

3.
Image segmentation is a very significant process in image analysis. Much effort based on thresholding has been made on this field as it is simple and intuitive, commonly used thresholding approaches are to optimize a criterion such as between-class variance or entropy for seeking appropriate threshold values. However, a mass of computational cost is needed and efficiency is broken down as an exhaustive search is utilized for finding the optimal thresholds, which results in application of evolutionary algorithm and swarm intelligence to obtain the optimal thresholds. This paper considers image thresholding as a constrained optimization problem and optimal thresholds for 1-level or multi-level thresholding in an image are acquired by maximizing the fuzzy entropy via a newly proposed bat algorithm. The optimal thresholding is achieved through the convergence of bat algorithm. The proposed method has been tested on some natural and infrared images. The results are compared with the fuzzy entropy based methods that are optimized by artificial bee colony algorithm (ABC), genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO); moreover, they are also compared with thresholding methods based on criteria of between-class variance and Kapur's entropy optimized by bat algorithm. It is demonstrated that the proposed method is robust, adaptive, encouraging on the score of CPU time and exhibits the better performance than other methods involved in the paper in terms of objective function values.  相似文献   

4.
The minimum cross entropy thresholding (MCET) has been widely applied in image thresholding. The search mechanism of firefly algorithm inspired by the social behavior of the swarms of firefly and the phenomenon of bioluminescent communication, is used to search for multilevel thresholds for image segmentation in this paper. This new multilevel thresholding algorithm is called the firefly-based minimum cross entropy thresholding (FF-based MCET) algorithm. Four different methods that are the exhaustive search, the particle swarm optimization (PSO), the quantum particle swarm optimization (QPSO) and honey bee mating optimization (HBMO) methods are implemented for comparison with the results of the proposed method. The experimental results show that the proposed FF-based MCET algorithm can efficiently search for multiple thresholds which are very close to the optimal ones examined by the exhaustive search method when the number of thresholds is less than 5. The need of computation time of using the FF-based MCET algorithm is the least, meanwhile, the results using the FF-based MCET algorithm is superior to the ones of PSO-based and QPSO-based MCET algorithms but is not significantly different to the HBMO-based MCET algorithm.  相似文献   

5.
The Kapur and Otsu methods are widely used image thresholding approaches and they are very efficient in bi-level thresholding applications. Evolutionary algorithms have been developed to extend the Kapur and Otsu methods to the multi-level thresholding case. However, there remains an unsolved argument that neither Kapur nor Otsu objective can optimally fit diverse content contained in different kinds of images. This paper proposes a multi-objective model which seeks to find the Pareto-optimal set with respect to Kapur and Otsu objectives. Based on dominance and diversity criteria, we developed a hybrid multi-objective particle swarm optimization (MOPSO) method by incorporating several intelligent search strategies. The ensemble strategy is also applied to automatically select the best search strategy to perform at various algorithm stages according to its historic performances. The experimental result shows that the solutions to our multi-objective model consistently produce equal or better segmentation results than those by the optimal solutions to the original Kapur and Otsu models, and that the proposed hybrid algorithm with and without the ensemble strategy produces a better approximation to the ideal Pareto front than those obtained by two other MOPSO variants and the MOEA/D. In comparison with the most recent multilevel thresholding methods, our approach also consistently obtains better performance in the segmentation result for several benchmark images.  相似文献   

6.

Multi-level thresholding is a helpful tool for several image segmentation applications. Evaluating the optimal thresholds can be applied using a widely adopted extensive scheme called Otsu’s thresholding. In the current work, bi-level and multi-level threshold procedures are proposed based on their histogram using Otsu’s between-class variance and a novel chaotic bat algorithm (CBA). Maximization of between-class variance function in Otsu technique is used as the objective function to obtain the optimum thresholds for the considered grayscale images. The proposed procedure is applied on a standard test images set of sizes (512 × 512) and (481 × 321). Further, the proposed approach performance is compared with heuristic procedures, such as particle swarm optimization, bacterial foraging optimization, firefly algorithm and bat algorithm. The evaluation assessment between the proposed and existing algorithms is conceded using evaluation metrics, namely root-mean-square error, peak signal to noise ratio, structural similarity index, objective function, and CPU time/iteration number of the optimization-based search. The results established that the proposed CBA provided better outcome for maximum number cases compared to its alternatives. Therefore, it can be applied in complex image processing such as automatic target recognition.

  相似文献   

7.

Multilevel thresholding is one of the most popular image segmentation techniques due to its simplicity and accuracy. Most of the thresholding approaches use either the histogram of an image or information from the grey-level co-occurrence matrix (GLCM) to compute the threshold. The medical images like MRI usually have vague boundaries and poor contrast. So, segmenting these images using solely histogram or texture attributes of GLCM proves to be insufficient. This paper proposes a novel multilevel thresholding approach for automatic segmentation of tumour lesions from magnetic resonance images. The proposed technique exploits both intensity and edge magnitude information present in image histogram and GLCM to compute the multiple thresholds. Subsequently, using both attributes, a hybrid fitness function has been formulated which can capture the variations in intensity and the edge magnitude present in different tumour groups effectively. Mutation-based particle swarm optimization (MPSO) technique has been used to optimize the fitness function so as to mitigate the problem of high computational complexity existing in the exhaustive search methods. Moreover, MPSO has better exploration capabilities as compared to conventional particle swarm optimization. The performance of the devised technique has been evaluated and compared with two other intensity- and texture-based approaches using three different measures: Jaccard, Dice and misclassification error. To compute these quantitative metrics, experiments were conducted on a series of images, including low-grade glioma tumour volumes taken from brain tumour image segmentation benchmark 2012 and 2015 data sets and real clinical tumour images. Experimental results show that the proposed approach outperforms the other competing algorithms by achieving an average value equal to 0.752, 0.854, 0.0052; 0.648, 0.762, 0.0177; 0.710, 0.813, 0.0148 and 0.886, 0.937, 0.0037 for four different data sets.

  相似文献   

8.
This paper presents a novel optimization approach to the combined heat and power economic dispatch problem by using bee colony optimization algorithm. The algorithm is a swarm-based algorithm inspired by the food foraging behavior of honey bees. The performance of the proposed algorithm is validated by illustration with a test system. The results of the proposed approach are compared with those of particle swarm optimization, real-coded genetic algorithm and evolutionary programing techniques. From numerical results, it is seen that bee colony optimization based approach is able to provide a better solution at a lesser computational effort.  相似文献   

9.
《Applied Soft Computing》2013,13(6):3130-3148
In intelligent watermarking (IW), evolutionary computing (EC) is employed in order to automatically set the embedding parameters of digital watermarking systems for each image. However, the computational complexity of EC techniques makes IW unfeasible for large scale applications involving heterogeneous images. In this paper, we propose a dynamic particle swarm optimization (DPSO) technique which relies on a memory of Gaussian mixture models (GMMs) of solutions in the optimization space. This technique is employed in the optimization of embedding parameters of a multi-level (robust/fragile) bi-tonal watermarking system in high data rate applications. A compact density representation of previously-found DPSO solutions is created through GMM in the optimization space, and stored in memory. Solutions are re-sampled from this memory, re-evaluated for new images and have their distribution of fitness values compared with that stored in the memory. When the distributions are similar, memory solutions are employed in a straightforward manner, avoiding costly re-optimization operations. A specialized memory management mechanism allows to maintain and adapt GMM distributions over time, as the image stream changes. This memory of GMMs allows an accurate representation of the topology of a stream of optimization problems. Consequently, new cases of optimization can be matched against previous cases more precisely (when compared with a memory of static solutions), leading to considerable decrease in computational burden. Simulation results on heterogeneous streams of images indicate that compared to full re-optimization for each document image, the proposed approach allows to decrease the computational requirement linked to EC by up to 97.7% with little impact on the accuracy for detecting watermarks. Comparable results were obtained for homogeneous streams of document images.  相似文献   

10.
Swarm Intelligence Approaches for Grid Load Balancing   总被引:1,自引:0,他引:1  
With the rapid growth of data and computational needs, distributed systems and computational Grids are gaining more and more attention. The huge amount of computations a Grid can fulfill in a specific amount of time cannot be performed by the best supercomputers. However, Grid performance can still be improved by making sure all the resources available in the Grid are utilized optimally using a good load balancing algorithm. This research proposes two new distributed swarm intelligence inspired load balancing algorithms. One algorithm is based on ant colony optimization and the other algorithm is based on particle swarm optimization. A simulation of the proposed approaches using a Grid simulation toolkit (GridSim) is conducted. The performance of the algorithms are evaluated using performance criteria such as makespan and load balancing level. A comparison of our proposed approaches with a classical approach called State Broadcast Algorithm and two random approaches is provided. Experimental results show the proposed algorithms perform very well in a Grid environment. Especially the application of particle swarm optimization, can yield better performance results in many scenarios than the ant colony approach.  相似文献   

11.
一种快速轮对踏面光截曲线图像分割方法   总被引:2,自引:0,他引:2  
赵勇 《电子技术应用》2011,37(3):130-132,136
为准确地实现轮对轮缘磨耗的测量,提出了将二维最大相关准则的阈值分割法应用于轮对踏面光截曲线图像的分割.引入量子粒子群优化算法代替穷尽搜索获取阈值向量.通过对实际的踏面光截曲线图象分割表明,该方法是一种实用、有效的踏面光截曲线图像分割法.  相似文献   

12.
量子微粒群在波阻抗反演中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
求解的局部性和计算速度慢是目前非线性波阻抗反演存在的主要缺陷。在与微粒群算法进行比较的基础上,研究了量子微粒群反演算法。数值实验结果表明,与微粒群反演相比,量子微粒群波阻抗反演在收敛速度和避免陷入局部极小等方面有着一定的优势,适合于非线性反演问题,该方法也适用于其他领域非线性最优化问题的求解,具有较强的普适性。  相似文献   

13.
This paper addresses a contrast enhancement technique that combines classical contrast enhancement with an evolutionary approach. The central goal of this work is to increase the information content and enhance the details of an image using an adaptive gamma correction technique aided by particle swarm optimization. Gamma correction is a well established technique that preserves the mean brightness of an image that produces natural looking images by the choice of an optimal gamma value. Here, Swarm intelligence based particle swarm optimization is employed to estimate an optimal gamma value. In the proposed method, the edge and information content (entropy) are the parameters used to formulate the fitness function. The proposed method is compared with state-of-the-art of techniques in terms of Weighted Average Peak Signal to Noise Ratio (WPSNR), Contrast, Homogeneity, Contrast Noise Ratio (CNR), and Measure of Enhancement (EME). Simulation results demonstrate that the proposed particle swarm optimization based contrast enhancement method improves the overall image contrast and enriches the information present in the image. In comparison to other contrast enhancement techniques, the proposed method brings out the hidden details of an image and is more suitable for applications in satellite imaging and night vision.  相似文献   

14.
The present paper proposes the development of a three-level thresholding based image segmentation technique for real images obtained from CT scanning of a human head. The proposed method utilizes maximization of fuzzy entropy to determine the optimal thresholds. The optimization problem is solved by employing a very recently proposed population-based optimization technique, called biogeography based optimization (BBO) technique. In this work we have proposed some improvements over the basic BBO technique to implement nonlinear variation of immigration rate and emigration rate with number of species in a habitat. The proposed improved BBO based algorithm and the basic BBO algorithm are implemented for segmentation of fifteen real CT image slices. The results show that the proposed improved BBO variants could perform better than the basic BBO technique as well as genetic algorithm (GA) and particle swarm optimization (PSO) based segmentation of the same images using the principle of maximization of fuzzy entropy.  相似文献   

15.
Camera calibration is an essential issue in many computer vision tasks in which quantitative information of a scene is to be derived from its images. It is concerned with the determination of a set of parameters from the given images. In literature, it has been modeled as a nonlinear global optimization problem and has been solved using various optimization techniques. In this article, a recently developed variant of a very popular global optimization technique—the particle swarm optimization (PSO) algorithm—has been used for solving this problem for a stereo camera system modeled by pin-hole camera model. Extensive experiments have been performed on synthetic data to test the applicability of the technique to this problem. The simulation results, which have been compared with those obtained by a real coded genetic algorithm (RCGA) in literature, show that the proposed PSO performs a bit better than RCGA in terms of computational effort.  相似文献   

16.
This paper presents an improved evolutionary algorithm based on quantum computing for optimal steady-state performance of power systems. However, the proposed general quantum genetic algorithm (GQ-GA) can be applied in various combinatorial optimization problems. In this study the GQ-GA determines the optimal settings of control variables, such as generator voltages, transformer taps and shunt VAR compensation devices for optimal reactive power and voltage control of IEEE 30-bus and 118-bus systems. The results of GQ-GA are compared with those given by the state-of-the-art evolutionary computational techniques such as enhanced GA, multi-objective evolutionary algorithm and particle swarm optimization algorithms, as well as the classical primal-dual interior-point optimal power flow algorithm. The comparison demonstrates the ability of the GQ-GA in reaching more optimal solutions.  相似文献   

17.
山艳  须文波孙俊 《计算机应用》2006,26(11):2645-2647
训练支持向量机的本质问题就是求解二次规划问题,但对大规模的训练样本来说,求解二次规划问题困难很大。遗传算法和粒子群算法等智能搜索技术可以在较少的时间开销内给出问题的近似解。量子粒子群优化(QPSO)算法是在经典的微粒群算法的基础上所提出的一种有较高收敛性和稳定性的进化算法。将操作简单而收敛快速的QPSO算法运用于训练支持向量机,优化求解二次规划问题,为解决大规模的二次规划问题开辟了一条新的途径。  相似文献   

18.
Determining the optimal thresholding for image segmentation has got more attention in recent years since it has many applications. There are several methods used to find the optimal thresholding values such as Otsu and Kapur based methods. These methods are suitable for bi-level thresholding case and they can be easily extended to the multilevel case, however, the process of determining the optimal thresholds in the case of multilevel thresholding is time-consuming. To avoid this problem, this paper examines the ability of two nature inspired algorithms namely: Whale Optimization Algorithm (WOA) and Moth-Flame Optimization (MFO) to determine the optimal multilevel thresholding for image segmentation. The MFO algorithm is inspired from the natural behavior of moths which have a special navigation style at night since they fly using the moonlight, whereas, the WOA algorithm emulates the natural cooperative behaviors of whales. The candidate solutions in the adapted algorithms were created using the image histogram, and then they were updated based on the characteristics of each algorithm. The solutions are assessed using the Otsu’s fitness function during the optimization operation. The performance of the proposed algorithms has been evaluated using several of benchmark images and has been compared with five different swarm algorithms. The results have been analyzed based on the best fitness values, PSNR, and SSIM measures, as well as time complexity and the ANOVA test. The experimental results showed that the proposed methods outperformed the other swarm algorithms; in addition, the MFO showed better results than WOA, as well as provided a good balance between exploration and exploitation in all images at small and high threshold numbers.  相似文献   

19.
针对现有阈值分割算法利用穷举搜索寻找最优阈值而造成的计算成本较大的问题,提出了一种基于粒子群优化算法和模糊熵的多级阈值图像分割算法。图像分割是图像分析中非常重要的预处理步骤,在提出的方法中,首先选择香农熵和模糊熵作为优化技术的目标函数;然后建立一种基于粒子群优化算法的多层次图像阈值分割,通过最大化香农熵或模糊熵进行图像分割。最后从图像分割数据库中选取Lena、baboon和airplane作为测试图像进行性能分析(包括鲁棒性、效率和收敛性),并与现有的几种阈值分割算法进行比较。结果显示,提出的算法得到了更高PSNR值和更少的分类误差,证明了该算法是一种高效的多级阈值图像分割算法。  相似文献   

20.
具有混合群智能行为的萤火虫群优化算法研究   总被引:1,自引:1,他引:0  
吴斌  崔志勇  倪卫红 《计算机科学》2012,39(5):198-200,228
萤火虫群优化算法是一种新型的群智能优化算法,基本的萤火虫群优化算法存在收敛精度低等问题。为了提高算法的性能,借鉴蜂群和鸟群的群体智能行为,改进萤火虫群优化算法的移动策略。运用均匀设计调整改进算法的参数取值。若干经典测试问题的实验仿真结果表明,引入混合智能行为大幅提升了算法的优化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号