共查询到20条相似文献,搜索用时 15 毫秒
1.
在粒子滤波框架下,估计的准确性受到建议分布选取的影响很大。传统的粒子滤波通常采用系统转移概率作为建议分布,但传统的建议分布选取方法由于没有考虑新的观测信息,因此不能产生准确的估计值。为此采用一种叫做Galerkin法的数学工具去构造建议分布,依据该方法构造的建议分布相对传统的方法提高了粒子滤波估计的准确性。同时,在新的跟踪算法框架中,将颜色模型和形状模型进行自适应的融合,并提出了一种新的模型更新方法,提高了目标跟踪的稳定性。实验结果证明了该跟踪算法的有效性。 相似文献
2.
《Expert systems with applications》2014,41(14):6315-6326
The aim of this paper is to propose an evolutionary particle filter based upon improved cuckoo search algorithm which will overcome the sample impoverishment problem of generic particle filter. In our proposed method, improved cuckoo search (ICS) algorithm is embedded into particle filter (PF) framework. Improved cuckoo search algorithm uses levy flight for generating new particles in the solution and introduced randomness in samples by abandoning a fraction of these particles. The second important contribution in this article is introduction of new way for tackling scaling and rotational error in object tracking. Performance of proposed improved cuckoo particle filter is investigated and evaluated on synthetic and standard video sequences and compared with the generic particle filter and particle swarm optimization based particle filter. We show that object tracking using improved cuckoo particle filter provides more reliable and efficient tracking results than generic particle filter and PSO-particle filter. The proposed technique works for real time video objects tracking. 相似文献
3.
In this paper a novel filtering procedure that uses a variant of the variable neighborhood search (VNS) algorithm for solving nonlinear global optimization problems is presented. The base of the new estimator is a particle filter enhanced by the VNS algorithm in resampling step. The VNS is used to mitigate degeneracy by iteratively moving weighted samples from starting positions into the parts of the state space where peaks and ridges of a posterior distribution are situated. For testing purposes, bearings-only tracking problem is used, with two static observers and two types of targets: non-maneuvering and maneuvering. Through numerous Monte Carlo simulations, we compared performance of the proposed filtering procedure with the performance of several standard estimation algorithms. The simulation results show that the algorithm mostly performed better than the other estimators used for comparison; it is robust and has fast initial convergence rate. Robustness to modeling errors of this filtering procedure is demonstrated through tracking of the maneuvering target. Moreover, in the paper it is shown that it is possible to combine the proposed algorithm with an interacted multiple model framework. 相似文献
4.
为解决红外运动目标跟踪中的遮挡、形变等问题,提出一种基于粒子滤波的跟踪方法。该方法首先利用目标区域的灰度分布,建立了一种基于统计直方图的系统观测概率模型。并将飞机目标的运动看作惯性受限的非平稳过程,采用微分线性拟合模型作为系统状态转移模型。序列图像的实验表明:该算法能够在目标高速运动或发生遮挡的情况下稳健跟踪目标,其总体性能优于Mean Shift算法。 相似文献
5.
J.J. Pantrigo A. Snchez A.S. Montemayor A. Duarte 《Pattern recognition letters》2008,29(8):1160-PRintPerclntel
Multi-dimensional visual tracking (MVT) problems include visual tracking tasks where the system state is defined by a high number of variables corresponding to multiple model components and/or multiple targets. A MVT problem can be modeled as a dynamic optimization problem. In this context, we propose an algorithm which hybridizes particle filters (PF) and the scatter search (SS) metaheuristic, called scatter search particle filter (SSPF), where the optimization strategies from SS are embedded into the PF framework. Scatter search is a population-based metaheuristic successfully applied to several complex combinatorial optimization problems. The most representative optimization strategies from SS are both solution combination and solution improvement. Combination stage enables the solutions to share information about the problem to produce better solutions. Improvement stage makes also possible to obtain better solutions by exploring the neighborhood of a given solution. In this paper, we have described and evaluated the performance of the scatter search particle filter (SSPF) in MVT problems. Specifically, we have compared the performance of several state-of-the-art PF-based algorithms with SSPF algorithm in different instances of 2D articulated object tracking problem and 2D multiple object tracking. Some of these instances are from the CVBase’06 standard database. Experimental results show an important performance gain and better tracking accuracy in favour of our approach. 相似文献
6.
提出一种基于混合粒子滤波的运动火焰跟踪算法。针对通用粒子滤波算法计算量大的问题,提出了混合粒子滤波,将Mean Shift算法嵌入到粒子滤波中,并用自适应运动模型和目标模型自动更新的策略改善算法性能。基于混合粒子滤波提出了火焰识别和火焰跟踪相结合的运动火焰自动跟踪算法,先火焰识别,再火焰跟踪,且跟踪时,如果估计目标与模型的相似度小于阈值则切换到火焰识别阶段。识别与跟踪的相互切换保证了跟踪结果的正确性。实验结果表明混合粒子滤波具有很好的跟踪效果,与粒子滤波和Mean Shift算法相比,提高了跟踪精度;基于混合粒子滤波的火焰跟踪算法能够跟踪复杂环境下的运动火焰,提供火焰的精确位置。 相似文献
7.
8.
一种基于改进粒子滤波的多目标跟踪算法 总被引:6,自引:0,他引:6
针对复杂背景环境下的多目标跟踪问题,论述了主要的数据关联技术,将目标检测算法与粒子滤波相结合,利用颜色直方图作为观测模型,并利用全领域(GNN)算法进行数据关联.提出一种改进的基于粒子滤波的多目标跟踪算法,实现了视频场景中的多个目标跟踪.该算法对于目标在场景中的频繁出现和消失、相似外表、交叉运动和短暂遮挡等均有较好的处理效果. 相似文献
9.
基于粒子滤波的红外运动目标跟踪 总被引:1,自引:0,他引:1
提出一种基于粒子滤波及Mean Shift算法的红外运动目标跟踪方法。该方法首先利用目标区域的灰度分布,建立了一种基于统计直方图的系统观测概率模型,并针对红外目标机动性强,需要大量粒子才能保证算法鲁棒性的问题,将Mean Shift算法引入到粒子更新的过程中,使粒子分布在观测的局部区域内,在利用少量粒子实现分布多样性的同时,有效克服了粒子退化现象。序列图像的实验表明:该算法能够在目标高速运动或发生遮挡的情况下稳健跟踪目标,其总体性能优于传统的粒子滤波算法。 相似文献
10.
11.
12.
粒子滤波算法是进行运动目标跟踪的一种重要方法。针对传统粒子滤波算法在进行目标跟踪时存在的计算量大、实时性不足的问题,提出一种基于二值掩码图像的粒子滤波目标跟踪快速算法。该算法在传统粒子滤波算法的每个帧处理阶段产生二值掩码图像,再结合权重选择方法移除背景中权重较小的粒子,保留权重较大的重要粒子。提出的算法可以有效减少参与计算的粒子数目,节约算法的计算成本,从而提高目标跟踪的实时性。与传统粒子滤波算法进行比较,实验结果表明,提出的算法不仅能够有效地提高跟踪速度,而且跟踪结果的准确性和鲁棒性也有所增强。 相似文献
13.
针对现有跟踪主流算法对目标机动性、目标遮挡和目标背景干扰综合性能不强的现状,改进算法利用组合分片模型和粒子滤波算法的结合来提升综合性能,提高跟踪算法准确性。改进算法采用粒子滤波算法,同时通过优化组合重采样算法提高算法的跟踪性能。组合分片模型结合水平竖直分片模型和环形分片模型的优点,通过Bhattacharyya系数进行模型相似性度量,高效克服人脸跟踪中遮挡问题和背景干扰问题。实验通过改进算法和对比算法在多变化人脸视频集进行跟踪,证明改进算法提高了对人脸目标的跟踪成功率。针对人脸跟踪中目标机动性、目标遮挡和目标背景干扰问题,通过算法的改进,跟踪效果明显改善、提升了跟踪的成功率,实现了算法对以上三种因素综合性能的提升。 相似文献
14.
State estimation using the particle filter with mode tracking 总被引:1,自引:0,他引:1
A particle filter is a data assimilation scheme that employs a fully nonlinear, non-Gaussian analysis step. Unfortunately as the size of the state grows the number of ensemble members required for the particle filter to converge to the true solution increases exponentially. To overcome this Vaswani [Vaswani N. 2008. IEEE Trans Signal Process 56:4583–97] proposed a new method known as mode tracking to improve the efficiency of the particle filter. When mode tracking, the state is split into two subspaces. One subspace is forecast using the particle filter, the other is treated so that its values are set equal to the mode of the marginal pdf. There are many ways to split the state. One hypothesis is that the best results should be obtained from the particle filter with mode tracking when we mode track the maximum number of unimodal dimensions. The aim of this paper is to test this hypothesis using the three dimensional stochastic Lorenz equations with direct observations. It is found that mode tracking the maximum number of unimodal dimensions does not always provide the best result. The best choice of states to mode track depends on the number of particles used and the accuracy and frequency of the observations. 相似文献
15.
This paper proposes a new method to segment and track multiple objects through occlusion by integrating spatial-color Gaussian mixture model (SCGMM) into an energy minimization framework. When occlusion does not occur, a SCGMM is learned for each object. When the objects are subject to occlusion, energy minimization is used to segment the objects from occlusion. To make the learned SCGMMs suitable for the segmentation of the current occlusion, a displacing procedure is utilized to adapt the SCGMMs to the spatial variations. A multi-label energy function is formulated building on the displaced SCGMMs and then minimized using the multi-label graph cut algorithm, thus leading to both the segmentation and tracking results of the objects with occlusion. Experimental validation of the proposed method is performed and presented on several video sequences. 相似文献
16.
基于视觉的无人机地面目标跟踪状态估计为非线性滤波问题,针对使用一般粒子滤波算法存在粒子退化和计算量大的缺陷问题,提出了一种基于排序的粒子滤波算法,对粒子依误差大小进行排序并计算粒子权重。仿真试验表明,该方法减轻了粒子贫化的影响,提高了状态估计精度。 相似文献
17.
一种基于卡尔曼滤波的运动物体跟踪算法 总被引:4,自引:1,他引:4
针对实时视频监控领域中传统的Camshift算法不能有效解决遮挡和高速运动等问题,提出一种改进的Camshift算法与卡尔曼滤波相结合的运动物体跟踪算法。首先,通过二次搜索来调整搜索窗口的位置和大小,保证Camshift跟踪的可靠性;然后,在Camshift算法的基础上通过卡尔曼滤波对搜索窗口进行运动预测,保证实时跟踪。实验表明该方法具有较好的实时性,并能够有效地解决遮挡等问题。 相似文献
18.
19.
人物跟踪技术是目前智能监控系统的核心方法之一,针对人脸运动的非线性非高斯的特点,引入粒子滤波算法来进行运动预测估计,抵抗遮挡干扰。同时,根据人脸结构特点,提出了一种分块颜色直方图,用以描述人脸的特征。并且根据预测精度对预测过程中目标运动速度和过程噪声方差进行自适应更新。实验结果表明,在人脸的旋转,肤色和部分遮挡影响下跟踪精度较高,抵抗光照环境变化,以及人脸大小变化等的鲁棒性较强。 相似文献
20.
In this article a novel approach to visual tracking called the harmony filter is presented. It is based on the Harmony Search algorithm, a derivative free meta-heuristic optimisation algorithm inspired by the way musicians improvise new harmonies. The harmony filter models the target as a colour histogram and searches for the best estimated target location using the Bhattacharyya coefficient as a fitness metric. Experimental results show that the harmony filter can robustly track an arbitrary target in challenging conditions. We compare the speed and accuracy of the harmony filter with other popular tracking algorithms including the particle filter and the unscented Kalman filter. Experimental results show the harmony filter to be faster and more accurate than both the particle filter and the unscented Kalman filter. 相似文献