首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
为解决采用最小均方误差(MMSE)信道预测的发射天线选择(TASP)/接收天线最大比合并(MRC)的无线通信系统设计问题,利用抛物柱面函数以及高斯Q函数的近似表达式和矩生成函数(MGF)法,分别推导了瑞利块衰落信道上采用TASP/MRC天线分集的相干检测M进制正交和双正交信号的平均误符号率(ASER)精确表达式以及正交信号ASER的近似表达式.数值计算和仿真结果验证了采用TASP/MRC和相干检测的正交/双正交ASER精确表达式的正确性以及正交信号ASER近似表达式的准确性.上述M进制正交/双正交信号ASER精确或近似表达式,可用于设计采用相干检测M进制正交和双正交信号的TASP/MRC天线分集系统,并能够快速地确定收发天线数和信道预测器级数等参数,避免耗时的计算机仿真.  相似文献   

2.
In this paper, we present a simplified maximum likelihood detection metric for the newly emerging space-time block codes (STBCs) with generalized coordinate interleaved orthogonal design (GCIOD). We also derive the symbol pairwise error probability (PEP) and the union bound on symbol error rate (SER) for a space-time block coded (STBCed) system with single-symbol detection and rotated QAM scheme over flat Rayleigh fading channels. In particular, linear STBCs with complex orthogonal design (COD) and GCIOD are considered. Based on the theoretical analysis, the symbol PEP of the GCIOD codes is related to the transmit power, signal-to-noise ratio, and the rotated angle of the rotated QAM scheme. However, the symbol PEP of the COD code is irrelevant to the rotated angle. It is shown that simulation results match well with our analysis. Thus, the union bounds on SER can be applied to predict the performance of a STBCed system with adaptive code selection between the full-rate COD and GCIOD codes.  相似文献   

3.
BER analysis of QAM on fading channels with transmit diversity   总被引:1,自引:0,他引:1  
In this letter, we derive analytical expressions for the bit error rate (BER) of space-time block codes (STBC) from complex orthogonal designs (COD) using quadrature amplitude modulation (QAM) on Rayleigh fading channels. We take a bit log-likelihood ratio (LLR) based approach to derive the BER expressions. The approach presented here can be used in the BER analysis of any STBC from COD with linear processing for any value of M in an M-QAM system. Here, we present the BER analysis and results for a 16-QAM system with i) (2-Tx, L-Rx) antennas using Alamouti code (rate-1 STBC), ii) (3-Tx, L-Rx) antennas using a rate-1/2 STBC, and iii) (5-Tx, L-Rx) antennas using a rate-7/11 STBC. In addition to being used in the BER analysis, the LLRs derived can also be used as soft inputs to decoders for various coded QAM schemes, including turbo coded QAM with space-time coding as in high speed downlink packet access (HSDPA) in 3G.  相似文献   

4.
Error performance of a cooperative system can be enhanced by using transmit and receive diversity techniques at transmission links. The number of transmit/receive RF chain pairs required to achieve full diversity can be decreased to one for each link by using transmit antenna selection (TAS) method at the transmitter and selection combining (SC) method at the receiver. Thus, hardware complexity of a multiple input multiple output (MIMO) cooperative scheme can be significantly reduced when compared to systems that use TAS and maximum ratio combining (MRC). In this paper, we investigate the performance of an amplify‐and‐forward cooperative system where TAS/SC is utilized. We derive the probability density function (pdf) of end‐to‐end SNR of the system for Rayleigh fading channels. By using this pdf, we obtain the exact symbol error rate expressions for M‐PSK and M‐QAM modulations and the exact outage probability expression. We also obtain the asymptotical diversity order using upper and lower bounds of the outage probability expression and show that our system provides the same diversity order as the cooperative system where TAS/MRC is utilized. We verify our results via computer simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This paper derives the symbol error probability for quadrature amplitude modulation(QAM) with L-fold space diversity in Rayleigh fading channels. Two combining techniques, maximal ratio combining(MRC) and selection combining(SC), are considered. The formula for MRC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an additive white Gaussian noise(AWGN) channel over a chi-square distribution with 2L degrees of freedom. The obtained formula overcomes the limitations of the earlier work, which has been limited only to deriving the symbol error rate(SER) of QAM with two branch MRC space diversity. The formula for SC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an AWGN channel over the distribution of the maximum signal-to-noise ratio among all of the diversity channels for SC space diversity. No analysis for QAM with SC space diversity has been reported yet. Analytical results show that the probability of error decreases with the order of diversity. We can also see that the incremental diversity gain per additional branch decreases as the number of branches becomes larger. On the other hand, the performance of 16 QAM with MRC becomes much better than that of SC as the number of branches becomes larger. By giving the order of diversity, L, and the number of signal points, M, we have been able to obtain the SER performance of QAM with general space diversity. These results can be used to determine the order of diversity to achieve the desired SER in land mobile communication system employing QAM modulation.  相似文献   

6.
This paper provides exact-form expressions for the average symbol error probability (ASEP) of various digital modulation schemes with maximal ratio combining (MRC) diversity over L independent, not necessarily identically distributed (n.i.d.) eta-mu fading channels. The derived expressions are given in terms of the Lauricella and Appell hypergeometric functions and include several others available in the literature such as those for Nakagami-m and Hoyt. General asymptotic ASEP expressions are also derived for all the considered modulation schemes which provide useful insights regarding the factors affecting the performance of the considered system.  相似文献   

7.
This letter focuses on the performance analysis of the decorrelating receiver in multipath Rician faded CDMA channels. M-ary QAM scheme is employed to improve the spectral efficiency. Approximate expressions are first derived for the two performance indexes: the average symbol error rate (SER) and the average bit error rate (BER) when the decorrelating-first receiver perfectly knows the channel information of the user of interest. To achieve desirable closed-form expressions of the SER and the BER, we exploit results in large system analysis and make assumptions of a high signal-to-interference ratio (SIR) and/or a small Rician K-factor. To measure the receiver performance in the practical scenario, we further derive expressions to approximate the average SER and BER of the decorrelating-first scheme with channel uncertainty. Simulation results demonstrate that the analytical results can also be employed to evaluate the performance of the combining-first receiver.  相似文献   

8.
We derive analytical expressions for the symbol error probability (SEP) for a hybrid selection/maximal-ratio combining (H-S/MRC) diversity system in multipath-fading wireless environments. With H-S/MRC, L out of N diversity branches are selected and combined using maximal-ratio combining (MRC). We consider coherent detection of M-ary phase-shift keying (MPSK) and quadrature amplitude modulation (MQAM) using H-S/MRC for the case of independent Rayleigh fading with equal signal-to-noise ratio averaged over the fading. The proposed problem is made analytically tractable by transforming the ordered physical diversity branches, which are correlated, into independent and identically distributed (i.i.d.) “virtual branches,” which results in a simple derivation of the SEP for arbitrary L and N. We further obtain a canonical structure for the SEP of H-S/MRC as a weighted sum of the elementary SEPs, which are the SEPs using MRC with i.i.d. diversity branches in Rayleigh fading, or equivalently the SEPs of the nondiversity (single-branch) system in Nakagami fading, whose closed-form expressions are well-known. We present numerical examples illustrating that H-S/MRC, even with L≪N, can achieve a performance close to that of N-branch MRC  相似文献   

9.
This paper shows the analytical performance expressions of M‐ary quadrature amplitude modulation burst symbol transmission for hybrid decode‐or‐amplify‐forward (HDAF) relay schemes over quasi‐static Rayleigh‐fading channels. First, we derive the probability density function of the received instantaneous signal‐to‐noise ratio as the simplified form, which is related to all the possible occurrence probabilities of error‐events for M‐ary quadrature amplitude modulation burst transmission. On the basis of the derived probability density function, we express average bit error probability, average symbol error probability, and average burst error rate as closed forms, which can be also applied to both amplify‐and‐forward and adaptive decode‐and‐forward (ADF) schemes. The analysis and simulation results show that HDAF scheme for burst transmission can achieve the performance of ADF scheme with symbol‐by‐symbol transmission, which is the achievable lower bound. Furthermore, the outage probability, the normalized channel capacity, and the goodput performance are also derived as closed forms. The analysis shows the superiority of HDAF scheme to ADF scheme. Comparison with simulations confirms that the derived analytical expressions are accurate over all signal‐to‐noise ratio regions and for different numbers of relays and modulation orders.  相似文献   

10.
The paper examines the impact of Gaussian distributed weighting errors (in the channel gain estimates used for coherent combination) on both the output statistics of a hybrid selection/maximal-ratio (SC/MRC) receiver and the degradation of the average symbol-error rate (ASER) performance as compared with the ideal case. New expressions are derived for the probability density function, cumulative distribution function and moment generating function (MGF) of the coherent hybrid SC/MRC combiner output signal-to-noise ratio (SNR). The MGF is then used to derive exact, closed-form, ASER expressions for binary and M-ary modulations in conjunction a nonideal hybrid SC/MRC receiver in a Rayleigh fading environment. Results for both selection combining (SC) and maximal-ratio combining (MRC) are obtained as limiting cases. Additionally, the effect of the weighting errors on both the outage rate of error probability and the average combined SNR is investigated. These analytical results provide insights into the tradeoff between diversity gain and combination losses, in concert with increasing orders of diversity branches in an energy-sharing communication system  相似文献   

11.
We study the energy harvesting (EH)-assisted system model based on the performance of a dual-hop cooperative communication system that is subjected to Nakagami- m fading. Through the partial relay selection method, the selection of Nth best relay (BR) is performed among M amplify and forward (AF) relays, which can harvest energy from radio frequency signals. At the receiver, the selection combining scheme is considered to select between the signals of Nth best relaying path and the direct path. For this considered system, we compute the closed-form expressions of outage probability (OP) and the average symbol error rate (ASER) for higher order quadrature amplitude modulation (QAM) techniques, especially for rectangular QAM, cross QAM, and hexagonal QAM. Further, a new moment-generating function expression is obtained which is used to derive the ASER expression related to the generalized non-coherent modulation technique. We also give the asymptotic expression of OP to find out the diversity order. Furthermore, we study the effect of fading parameters, Nth BR, and other factors on system behavior. Finally, we verify the derived expressions with Monte Carlo simulations.  相似文献   

12.
分析了地面多个中继节点采用放大转发协议辅助卫星通信构成的星地混合协作网存在同信道干扰时的性能.首先在用户端采用最大比合并方案并受到同信道干扰的情况下,得到其输出信干噪比的表达式.其次针对卫星链路服从阴影莱斯分布和地面链路服从瑞利分布的情况,推导出输出信干噪比的矩母函数,并进一步得到系统平均误符号率的解析表达式.接着,推导出高信噪比条件下系统平均误符号率的近似表达,为估算系统的性能提供了更加快速的方法.最后,计算机仿真验证了理论计算公式的准确性,并分析了信道参数、中继数目和调制方式对星地混合协作传输的影响.  相似文献   

13.
利用高斯Q函数的高阶次幂在最大比合并(MRC)分集接收瑞利衰落信道上统计平均的结果,推导了Nakagami 衰落信道上采用组合发射选择合并(SC)/接收 MRC 天线分集的相干检测差分编码四相相移键控(DE-QPSK)的平均误符号率(ASER)精确表达式。利用高斯Q函数的近似表达式和矩生成函数(MGF)方法,推导了Nakagami衰落信道上采用组合SC/MRC天线分集的相干检测DE-QPSK 的ASER近似表达式。通过数值计算和仿真,验证了DE-QPSK的ASER精确表达式的正确性以及近似表达式的准确性。利用精确表达式和近似表达式可研究收发天线数目和衰落参数对DE-QPSK的ASER性能的影响,为实际SC/MRC天线分集方案的设计提供了理论指导。  相似文献   

14.
An expression of characteristic function of signal-to-noise ratio (SNR) for two waves with diffused power (TWDP) fading channel is derived. Using this expression, the expression for the probability density function (PDF) of the output SNR of maximal ratio combining (MRC) receiver is obtained. Expressions for the performance matrix of MRC receiver over TWDP fading channels are also deduced. PDF based approach is followed to derive expressions of outage probability and average symbol error rate for coherent and non-coherent m-ary modulation schemes. Effects of the number of branches M and the fading parameters K and Δ on the system performance are studied. The results obtained are verified by Monte Carlo simulation.  相似文献   

15.
In this paper, we analyzed and compared the performance of cooperative diversity systems such as cooperative and multi dual‐hop networks with non‐regenerative relay nodes. The contributions of this study are twofolds. Firstly, analytical expressions of outage probability Pout and average symbol error rate ASER are derived using moment generating function (MGF) analysis of the received SNR with the assumption that the channel experiences Weibull fading and the best relay selection is used. Then, using the analytical results, comparative performance evaluation of cooperative and multi dual‐hop relay networks is done for varying number of relay nodes and different receive diversity schemes such as maximal ratio combining (MRC) and selection combining (SC). The results show that the cooperative relay network has better performance than a multi dual‐hop relay network in terms of Pout and ASER. The results also show that the multi dual‐hop network can achieve the same performance as the cooperative network with the requirement that it needs the deployment of three times more relay nodes.  相似文献   

16.
In this paper, we present a comprehensive capacity analysis of the downlink of multiuser diversity (MD) systems with adaptive transmission over Rayleigh fading channels. First, the exact capacity of the single‐input single‐output (SISO) systems with MD and adaptive transmission technique is derived. The optimal power allocation scheme for such a system is shown to be a water‐filling algorithm. Next, we derive the exact closed‐form capacity expressions for different multiple‐input multiple‐output (MIMO) schemes, including the selective combining (SC), maximum ratio combining (MRC) and space‐time block codes (STBC). In order to avoid the cumbersome numerical root finding techniques in solving the optimal cutoff SNR level below which the channel is not used, we also provide the approximate expressions for the cutoff level. For the MD MIMO systems, it is observed that the optimal power allocation strategy is to focus transmit power on a single transmit antenna (e.g. Tx‐MRC/Rx‐MRC scheme) or selecting the best transmit antennas (e.g. Tx‐SC/Rx‐MRC scheme). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, the performance analysis of wireless communication system over shadowed-Rice (SR) composite fading channel has been investigated and analysed. The unified analytical expressions of the average symbol error probability (ASEP) for several coherent and non-coherent modulation schemes separately with different constellation sizes are derived for composite fading channel under two different fade mitigation methods, with maximal ratio combining (MRC) microdiversity (Method 1) and MRC applied over the composite fading channel (Method 2). Furthermore, an asymptotic analysis is carried out and a closed-form expression of the ASEP with Method 2 is presented. Analytical expressions of the corresponding average probability of energy detection (PD) are formulated for both the methods. Finally, the derived PD expression is utilised to analyse the performance of cooperative system assuming erroneous feedback channel. Analysis of optimisation of detection threshold as well as number of cognitive users to minimise the total error rate is also carried out. The closed-form expressions are validated by comparing them with exact numerical results and Monte Carlo simulation.  相似文献   

18.
This paper analyse and investigate the performance of communication system with maximal ratio combining (MRC) and selection combining (SC) over Inverse Gaussian (IG) fading distribution. All formats of coherent and non-coherent modulation schemes are considered and novel analytical expressions of average symbol error probability (ASEP) with diversity are derived. Gamma and IG fading distributions are popularly used as a mathematically less complex solution to lognormal in the open literature. Hence, we provide a comparative analysis between IG and gamma fading with the aim to provide a quantitative measure of the difference between the two distributions in the context of ASEP. Moreover, the novel closed-form expressions of channel capacity under transmission schemes such as optimal rate adaptation (ORA) and channel inversion fixed rate (CIFR) are derived and analysed with MRC and SC diversity over IG fading. The analytical results have been validated with the Monte Carlo simulations and the exact numerical results.  相似文献   

19.
In this paper, we consider a cooperative communication system with differential modulation and relay-selection (DM–RS) in multi-relay networks, where the best relay is selected to forward the source node’s signal to the destination node with detect-and-forward (DetF) protocol. Unlike the conventional DM–RS–DetF scheme using phase shift keying (PSK), we propose a DM–RS–DetF scheme with quadrature amplitude modulation (QAM). Since the differential PSK scheme cannot be applied to the QAM constellations directly, we firstly develop the modulation and demodulation methods for the differential QAM scheme. Then, we derive a closed-form approximation and an upper bound of the symbol error rate for the DQAM–RS–DetF scheme over independent Rayleigh fading channels, by using the approximated signal-to-noise ratio of the equivalent relay link. Simulations results verify the validity of the analytical results and further show that when the modulation order $M>8$ in Rayleigh fading channels, the DQAM–RS–DetF scheme outperforms the DPSK–RS–DetF scheme.  相似文献   

20.
We derive and analyze the exact closed‐form expression for the average bit error probability (BEP) of M‐ary square quadrature amplitude modulation (QAM) for diversity reception in frequency‐nonselective Nakagami fading. A maximal ratio combining (MRC) diversity technique with independent or correlated fading cases are considered. Numerical results demonstrate error performance improvement with the use of MRC diversity reception. The presented new expressions offer a convenient way to evaluate the performance of M‐ary square QAM with an MRC diversity combiner for various cases of practical interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号