共查询到7条相似文献,搜索用时 0 毫秒
1.
基于遗传算法的带宽-时延约束多播路由优化算法 总被引:7,自引:3,他引:7
随着许多多媒体在高速网络中的应用,多播路由问题成为越来越重要的课题。多播路由问题在计算机网络中是著名的Steiner树问题,同时也是NP完全问题。该文提出了一种基于遗传算法的多播路由优化算法,采用可变长度染色体(多播树)和基因(路径)应用于编码问题。该算法在满足带宽和时延约束条件下寻找代价最小的多播树。仿真实验证明该算法能快速找到最优解,收敛速度快,可靠性高,能够满足多媒体网络对实时性的要求。 相似文献
2.
3.
通过对遗传算法算子的行为分析,给出概率动态变化的交叉和变异算子。同时,将遗传算法与随机模拟结合。设计GASS II遗传模拟混合智能优化算法。随机模拟采用缩减方差、加速收敛的分层抽样技术,保证抽样遍布整个搜索空间,突破个体分布“畸形”交叉对遗传算法进化能力的限制,有效发挥遗传算法的隐合并行搜索特性,在发生不成熟收敛时能从当前局部解中跳出,搜索转向具有更高适应度的抽样解,迅速收敛到全局最优解,从而有效避免早熟现象,提高了寻优的效率与精度。Benchmark问题评测结果显示出该算法的有效性。 相似文献
4.
为求解带时间窗车辆路径问题,针对传统蚂蚁遗传混合算法中参数静态设置、冗余迭代及收敛速度慢等缺点,提出一种动态混合蚁群优化算法( DHACO)。该算法首先借助最大最小蚁群得到初始解,利用蚁群优化算法求解带时间窗车辆路径问题的基本可行解。然后采用遗传算法交叉和变异操作对局部解和全局最优解进行二次优化,从而得到最优解。最后利用蚂蚁遗传混合算法融合策略,动态交叉调用蚂蚁算法、遗传算法,根据云关联规则自适应控制蚁群算法参数。 DHACO有效减少无效迭代次数,加快收敛速度。仿真结果表明,与其他相关的启发式算法相比,DHACO优于某些实例的已知最优解。 相似文献
5.
P. Ganesh Kumar T. Aruldoss Albert VictoireP. Renukadevi D. Devaraj 《Expert systems with applications》2012,39(2):1811-1821
Knowledge gained through classification of microarray gene expression data is increasingly important as they are useful for phenotype classification of diseases. Different from black box methods, fuzzy expert system can produce interpretable classifier with knowledge expressed in terms of if-then rules and membership function. This paper proposes a novel Genetic Swarm Algorithm (GSA) for obtaining near optimal rule set and membership function tuning. Advanced and problem specific genetic operators are proposed to improve the convergence of GSA and classification accuracy. The performance of the proposed approach is evaluated using six gene expression data sets. From the simulation study it is found that the proposed approach generated a compact fuzzy system with high classification accuracy for all the data sets when compared with other approaches. 相似文献
6.
针对标准果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)收敛速度慢、容易陷入局部最优及寻优精度低等缺陷,提出了一种动态调整搜索策略的果蝇优化算法(Fruit Fly Optimization Algorithm with Dynamic Adjustment of Search Strategy,FOAASS)。利用混沌映射增强种群初始位置的均匀性和随机性;根据种群进化信息动态调整部分果蝇的搜索策略;通过转换概率随机选取搜索半径并对其进行动态调整;当算法陷入早熟时,改变搜索策略以跳出局部最优。仿真实验结果表明,提出的改进算法相比标准果蝇优化算法和部分改进算法,有较好的寻优精度和收敛速度。 相似文献
7.
有别于传统的单目标方法,将带时间窗约束的车辆路径问题描述成为一个多目标最优化问题,并为之提出了一种多目标遗传算法。在算法中设计了擂台法则作为构造非支配集的方法,提出了可变爬山率的局部爬山法,并通过将组合种群分成多层非支配集来实现精英保留策略。实验结果表明,该算法能有效地求解车辆路径问题并且为决策者提供了强有力的决策支持。 相似文献