首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the ability of genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) techniques for groundwater depth forecasting. Five different GP and ANFIS models comprising various combinations of water table depth values from two stations, Bondville and Perry, are developed to forecast one-, two- and three-day ahead water table depths. The root mean square errors (RMSE), scatter index (SI), Variance account for (VAF) and coefficient of determination (R2) statistics are used for evaluating the accuracy of models. Based on the comparisons, it was found that the GP and ANFIS models could be employed successfully in forecasting water table depth fluctuations. However, GP is superior to ANFIS in giving explicit expressions for the problem.  相似文献   

2.
The embedded system is primarily designed for a particular piece of equipment and it varies on a case-by-case basis. The functionality is required to be specific to the equipment and consequently the application domain is limited. The software embedded in the system also faces problem due to the limitation of the hardware capacity. It is necessary for the designers to consider the hardware capacity and software specification simultaneously while an embedded system is developed. If hardware and software are taken into account concurrently, the design applicability and efficiency are decreased. The evolutionary computing (EC), which comprises techniques of evolutionary programming, evolution strategies, genetic algorithms, and genetic programming has been widely used to solve optimization problems for large scale and complex systems. It is capable to escape not only from local optima due to population based approach, but also from unbiased nature, which enables it to perform well in a situation with little domain knowledge. Therefore, this study proposes an evolutionary approach that applies the characteristics of software reuse, the metrics for the object-oriented concept, and the genetic algorithm to effectively manage and optimize the embedded system. This approach is implemented in the World Wide Web environment. Numerous results associated with performance enhancements of the algorithm are presented in this paper.  相似文献   

3.
This paper proposes a learning method for Beta fuzzy systems (BFS) based on a multiagent genetic algorithm. This method, called Multi-Agent Genetic Algorithm for the Design of BFS has two advantages. First, thanks to genetic algorithms (GA) efficiency, it allows to design a suitable and precise model for BFS. Second, it improves the GA convergence by reducing rule complexity thanks to the distributed implementation by multi-agent approach. Dynamic agents interact to provide an optimal solution in order to obtain the best BFS reaching the balance interpretability-precision. The performance of the method is tested on a simulated example.  相似文献   

4.
To analyze synchronization, concurrency, communication protocols and system performance, a system level specification is modelled in a coloured Petri net. A toolbox collects information for the implementation, e.g., processing times, waiting times, idle times, data accesses, processing requests. This is illustrated with a data-link protocol system, where the disturbance on the communication channels is modelled, too.  相似文献   

5.
The aim of this work is to propose a hybrid heuristic approach (called hGA) based on genetic algorithm (GA) and integer-programming formulation (IPF) to solve high dimensional classification problems in linguistic fuzzy rule-based classification systems. In this algorithm, each chromosome represents a rule for specified class, GA is used for producing several rules for each class, and finally IPF is used for selection of rules from a pool of rules, which are obtained by GA. The proposed algorithm is experimentally evaluated by the use of non-parametric statistical tests on seventeen classification benchmark data sets. Results of the comparative study show that hGA is able to discover accurate and concise classification rules.  相似文献   

6.
Among the computational intelligence techniques employed to solve classification problems, Fuzzy Rule-Based Classification Systems (FRBCSs) are a popular tool because of their interpretable models based on linguistic variables, which are easier to understand for the experts or end-users.The aim of this paper is to enhance the performance of FRBCSs by extending the Knowledge Base with the application of the concept of Interval-Valued Fuzzy Sets (IVFSs). We consider a post-processing genetic tuning step that adjusts the amplitude of the upper bound of the IVFS to contextualize the fuzzy partitions and to obtain a most accurate solution to the problem.We analyze the goodness of this approach using two basic and well-known fuzzy rule learning algorithms, the Chi et al.’s method and the fuzzy hybrid genetics-based machine learning algorithm. We show the improvement achieved by this model through an extensive empirical study with a large collection of data-sets.  相似文献   

7.
Jesús  P.J. 《Neurocomputing》2007,70(16-18):2902
This paper presents two different power system stabilizers (PSSs) which are designed making use of neural fuzzy network and genetic algorithms (GAs). In both cases, GAs tune a conventional PSS on different operating conditions and then, the relationship between these points and the PSS parameters is learned by the ANFIS. ANFIS will select the PSS parameters based on machine loading conditions. The first stabilizer is adjusted minimizing an objective function based on ITAE index, while second stabilizer is adjusted minimizing an objective function based on pole-placement technique. The proposed stabilizers have been tested by performing simulations of the overall nonlinear system. Preliminary experimental results are shown.  相似文献   

8.
Simulation-based techniques can be used to evaluate whether a particular NoC-based platform configuration is able to meet the timing constraints of an application, but they can only evaluate a finite set of scenarios. In safety-critical applications with hard real-time constraints, this is clearly not sufficient because there is an expectation that the application should be schedulable on that platform in all possible scenarios. This paper presents a particular NoC-based multiprocessor architecture, as well as a number of analytical methods that can be derived from that architecture, aiming to allow designers to check, for a given platform configuration, whether all application tasks and communication messages always meet their hard real-time constraints in every possible scenario. Experiments are presented, showing the use of the proposed methods when evaluating different task mapping and platform topologies.  相似文献   

9.
With Moore’s law supplying billions of transistors on-chip, embedded systems are undergoing a transition from single-core to multi-core to exploit this high transistor density for high performance. However, the optimal layout of these multiple cores along with the memory subsystem (caches and main memory) to satisfy power, area, and stringent real-time constraints is a challenging design endeavor. The short time-to-market constraint of embedded systems exacerbates this design challenge and necessitates the architectural modeling of embedded systems to reduce the time-to-market by expediting target applications to device/architecture mapping. In this paper, we present a queueing theoretic approach for modeling multi-core embedded systems that provides a quick and inexpensive performance evaluation both in terms of time and resources as compared to the development of multi-core simulators and running benchmarks on these simulators. We verify our queueing theoretic modeling approach by running SPLASH-2 benchmarks on the SuperESCalar simulator (SESC). Results reveal that our queueing theoretic model qualitatively evaluates multi-core architectures accurately with an average difference of 5.6% as compared to the architectures’ evaluations from the SESC simulator. Our modeling approach can be used for performance per watt and performance per unit area characterizations of multi-core embedded architectures, with varying number of processor cores and cache configurations, to provide a comparative analysis.  相似文献   

10.
Over the last two decades, evolutionary algorithms (EAs) have become a popular approach for solving water resources optimization problems. However, the issue of low computational efficiency limits their application to large, realistic problems. This paper uses the optimal design of water distribution systems (WDSs) as an example to illustrate how the efficiency of genetic algorithms (GAs) can be improved by using heuristic domain knowledge in the sampling of the initial population. A new heuristic procedure called the Prescreened Heuristic Sampling Method (PHSM) is proposed and tested on seven WDS cases studies of varying size. The EPANet input files for these case studies are provided as supplementary material. The performance of the PHSM is compared with that of another heuristic sampling method and two non-heuristic sampling methods. The results show that PHSM clearly performs best overall, both in terms of computational efficiency and the ability to find near-optimal solutions. In addition, the relative advantage of using the PHSM increases with network size.  相似文献   

11.
提出了一种设计递阶模糊系统的简易而有效的方法.在得到一个单级模糊系统的基础上,用灵敏度分析法对每一个输入变量的重要性进行排序,从而确定每一级子系统的输入变量.利用减法聚类和自适应神经 模糊推理系统逐级对子系统进行训练.所得到的递阶模糊系统可进一步得到简化.仿真实例证实了设计方法的有效性.  相似文献   

12.
电力系统无功优化问题是一个多变量、多约束的混合非线性规划问题,其操作变量既有连续变量又有离散变量,其优化过程比较复杂。遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应的全局优化搜索算法,可用于解决含有离散变量的复杂优化问题。本文选用遗传算法求解电力系统无功优化问题,并对基本遗传算法的编码、初始种群、适应度函数和交叉、变异策略等进行改进,使用本文提出的改进算法对IEEE1 4节点进行无功优化计算,结果证明本文模型和算法的实用性、可靠性和优越性。  相似文献   

13.
Landslide is a major geo-environmental hazard which imparts serious threat to lives and properties. The slope failures are due to adverse inherent geological conditions triggered by an external factor. This paper proposes a new method for the prediction of displacement of step-like landslides, by accounting the controlling factors, using recently proposed extreme learning adaptive neuro-fuzzy inference system (ELANFIS) with empirical mode decomposition (EMD) technique. ELANFIS reduces the computational complexity of conventional ANFIS by incorporating the theoretical idea of extreme learning machines (ELM). The rainfall data and reservoir level elevation data are also integrated into the study. The nonlinear original landslide displacement series, rainfall data, and reservoir level elevation data are first converted into a limited number of intrinsic mode functions (IMF) and one residue. Then decomposed displacement data are predicted by using appropriate ELANFIS model. Final prediction is obtained by the summation of outputs of all ELANFIS sub models. The performance of proposed the technique is tested for the prediction Baishuihe and Shiliushubao landslides. The results show that ELANFIS with EMD model outperforms other methods in terms of generalization performance.  相似文献   

14.
When performing a classification task, we may find some data-sets with a different class distribution among their patterns. This problem is known as classification with imbalanced data-sets and it appears in many real application areas. For this reason, it has recently become a relevant topic in the area of Machine Learning.The aim of this work is to improve the behaviour of fuzzy rule based classification systems (FRBCSs) in the framework of imbalanced data-sets by means of a tuning step. Specifically, we adapt the 2-tuples based genetic tuning approach to classification problems showing the good synergy between this method and some FRBCSs.Our empirical results show that the 2-tuples based genetic tuning increases the performance of FRBCSs in all types of imbalanced data. Furthermore, when the initial Rule Base, built by a fuzzy rule learning methodology, obtains a good behaviour in terms of accuracy, we achieve a higher improvement in performance for the whole model when applying the genetic 2-tuples post-processing step. This enhancement is also obtained in the case of cooperation with a preprocessing stage, proving the necessity of rebalancing the training set before the learning phase when dealing with imbalanced data.  相似文献   

15.
Type-2 fuzzy logic systems have extensively been applied to various engineering problems, e.g. identification, prediction, control, pattern recognition, etc. in the past two decades, and the results were promising especially in the presence of significant uncertainties in the system. In the design of type-2 fuzzy logic systems, the early applications were realized in a way that both the antecedent and consequent parameters were chosen by the designer with perhaps some inputs from some experts. Since 2000s, a huge number of papers have been published which are based on the adaptation of the parameters of type-2 fuzzy logic systems using the training data either online or offline. Consequently, the major challenge was to design these systems in an optimal way in terms of their optimal structure and their corresponding optimal parameter update rules. In this review, the state of the art of the three major classes of optimization methods are investigated: derivative-based (computational approaches), derivative-free (heuristic methods) and hybrid methods which are the fusion of both the derivative-free and derivative-based methods.  相似文献   

16.
In this paper, a genetic algorithm-based approach is proposed to determine a desired sampling-time range which guarantees minimum phase behaviour for the sampled-data system of an interval plant preceded by a zero-order hold (ZOH). Based on a worst-case analysis, the identification problem of the sampling-time range is first formulated as an optimization problem, which is subsequently solved under a GA-based framework incorporating two genetic algorithms. The first genetic algorithm searches both the uncertain plant parameters and sampling time to dynamically reduce the search range for locating the desired sampling-time boundaries based on verification results from the second genetic algorithm. As a result, the desired sampling-time range ensuring minimum phase behaviour of the sampled-data interval system can be evolutionarily obtained. Because of the time-consuming process that genetic algorithms generally exhibit, particularly the problem nature which requires undertaking a large number of evolution cycles, parallel computation for the proposed genetic algorithm is therefore proposed to accelerate the derivation process. Illustrated examples in this paper have demonstrated that the proposed GA-based approach is capable of accurately locating the boundaries of the desired sampling-time range.  相似文献   

17.
进行机械臂角度控制器设计过程中,为提高机器人机械臂灵活性,降低关节角度控制误差,设计一种细菌觅食算法的嵌入式机械臂角度控制器。首先,构建机械臂动力学模型以获取机械臂的柔性特征及其关节位置,根据获取的信息确定角度控制器的硬件逻辑结构和算法。然后,使用ARM微处理器嵌入式操作系统,设计包含移动控制终端和机械臂控制端的控制器硬件结构。最后,采用细菌觅食算法优化控制器参数,并实现代码完成机器人机械臂角度的精准跟踪控制。仿真分析结果表明:所提方法具有较高的位姿跟踪精度、角度控制误差小、稳定性强,能够保证机械臂关节角度无超调,具有极高的机器工程应用价值。  相似文献   

18.
Distributed Scheduling (DS) problems have attracted attention by researchers in recent years. DS problems in multi-factory production are much more complicated than classical scheduling problems because they involve not only the scheduling problems in a single factory, but also the problems in the higher level, which is: how to allocate the jobs to suitable factories. It mainly focuses on solving two issues simultaneously: (i) allocation of jobs to suitable factories and (ii) determination of the corresponding production schedules in each factory. Its objective is to maximize system efficiency by finding an optimal plan for a better collaboration among various processes. However, in many papers, machine maintenance has usually been ignored during the production scheduling. In reality, every machine requires maintenance, which will directly influence the machine's availability, and consequently the planned production schedule. The objective of this paper is to propose a modified genetic algorithm approach to deal with those DS models with maintenance consideration, aiming to minimize the makespan of the jobs. Its optimization performance has been compared with other existing approaches to demonstrate its reliability. This paper also tests the influence of the relationship between the maintenance repairing time and the machine age to the performance of scheduling of maintenance during DS in the studied models.  相似文献   

19.
We propose a design method for neurocontrollers (NCs) evolved by a genetic algorithm (GA) for the control of the backward movement of multitrailer truck systems. The difficulty of controlling backward movement increases with the number of connected trailers. In order to search for the best NCs for multitrailer systems, we propose a step-up training method. The step-up training sequence is as follows. First, the initial NCs, that are set to random values, are trained for an easy control object. Second, the set of NCs is trained for more difficult control objects. In this study, the initial NCs are first trained for a two-trailer connected truck system, then the NCs are trained for a three-trailer system, and finally the NCs are trained for a four-trailer system. The step-up training method is able to advance to NCs which can successfully control multitrailer systems. Simulation results show that the step-up training method is useful for multitrailer systems.This work was presented in part at the 8th International Symposium on Artificial Life and Robotics, Oita, Japan, January 24–26, 2003  相似文献   

20.
By employing the Deimling fixed point index theory, we consider a class of second-order nonlinear differential systems with two parameters . We show that there exist three nonempty subsets of : Γ, Δ1 and Δ2 such that and the system has at least two positive periodic solutions for (λ,μ)Δ1, one positive periodic solution for (λ,μ)Γ and no positive periodic solutions for (λ,μ)Δ2. Meanwhile, we find two straight lines L1 and L2 such that Γ lies between L1 and L2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号