首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We synthesized an ultra low bandgap terpolymer denoted as P containing fluorinated-fluorene attached thiadiazoloquinoxaline and benzothiadiazole acceptors and thiophene as donor in its backbone and investigated its optical and electrochemical properties. This terpolymer is used for as donor along with PC71BM as electron acceptor in solution processed polymer solar cells (PSCs). The P showed a shows strong absorption band from 650 nm to 1100 nm with an optical bandgap of 1.12 eV and highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of −5.25 eV and −3.87 eV, respectively. After the optimization of P to PC71BM weight ratio, the optimized weight ratio 1:2 in chlorobenzene (CB) solution, the PSC showed overall power conversion efficiency of 4.10% (Jsc of 10.96 mA/cm2, Voc of 0.68 V and FF of 0.55). After the solvent additive (3 v% DIO) followed by subsequent thermal annealing (SA-TA) the PCE has been increased up to 7.54% with Jsc of 16.12 mA/cm2, Voc of 0.65 V and FF of 0.72. The increase in the PCE is related with the enhancement in the both Jsc and FF, attributed optimized nanoscale morphology of the active layer for both efficient exciton dissociation and charge transport towards the electrodes and balanced charge transport in the device, induced by the TSA treatment of the active layer. This is the highest PCE of PSCs with an energy loss about 0.47 eV with the low bandgap of 1.12 eV.  相似文献   

2.
Direct arylation polymerization (DAP) is emerging as a promising green, cheap, simple, and efficient environment friendly method for synthesizing conjugated polymers without involving any organometallic reagent. We report fluorene based novel cross-conjugated alternate and random copolymers for polymer solar cells (PSCs), which were synthesized by DAP and/or Yamamoto polymerization under appropriate reaction conditions to obtain high molecular weight. These cross-conjugated polymers possess absorption maxima in the range of 490–520 nm and have narrow band gap (1.7–2.05 eV) which is suitable for bulk heterojuntion (BHJ) type organic solar cells. Among the synthesized polymers, the highest number average molecular weight (Mn) i.e. 43.1 kg mol−1 was obtained for polymer P2b (poly((9H-fluoren-9-ylidene)methylene)bis((2-ethylhexyl)sulfane)-alt-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)), and so good polymeric films were formed for P2b. Thus, BHJ films were prepared for P2b for device performance studies and the morphology of these films was studied by atomic force microscopy (AFM). Polymer P2b was blended with the fullerene derivative [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) in different ratios and under the illumination of solar simulator with Air Mass global (AM 1.5G) irradiated at 100 mW cm−2. Power conversion efficiency (PCE) of 1.4% has been achieved for BHJs in ratio of 1:2 of P2b: PC71BM in simply processed devices. This result indicates that cross-conjugated polymers can be tapped as potential donors for BHJs as the PCE obtained is the highest among this type of cross-conjugated polymers.  相似文献   

3.
To investigate the effect of the fluoride phenyl side-chains into quinoxaline (PQx) unit on the photovoltaic performances of polymers, we demonstrated the synthesis and characterization of two novel wide-bandgap (WBG) copolymers, PIDT-DTPQx and PIDT-DTFPQx, in which indacenodithiophene (IDT), 2,3-diphenylquinoxaline (PQx) (and/or 2,3-bis(4-fluorophenyl)quinoxaline (FPQx)) and thiophene (T) were used as the donor (D) unit, acceptor (A) unit and π-bridge, respectively. Compared to the non-fluorine substituted PIDT-DTPQx, fluorine substituted PIDT-DTFPQx presents a deep HOMO energy level and a high hole mobility. Obviously, improved the Voc, Jsc, and FF simultaneously, giving rise to overall efficiencies in the PIDT-DTFPQx/PC71BM-based PSCs. A highest PCE of 5.78% was obtained with a Voc of 0.86 V, Jsc of 10.84 mA cm−2 and FF of 61.7% in the PIDT-DTFPQx/PC71BM-based PSCs, while PIDT-DTPQx based devices also demonstrated a PCE of 5.11%, under the illumination of AM 1.5G (100 mW cm−2). Note that these PCE values were achieved for PSCs without any extra treatments. Furthermore, these optimal devices have a film thickness of about 175 nm for the polymer/PC71BM-based active layers. The results provide that introduction of the fluorine atom into quinoxaline unit by side-chain engineering is one of the effective strategies to construct the promising polymer donor materials for future application of large-area polymer solar cells.  相似文献   

4.
Innovating molecular structure of copolymer donor materials is still one of the prominent approach to obtain high-performance polymer solar cells (PSCs). In this paper, two novel wide bandgap (WBG) copolymers, namely PBDTTS-IQ and PBDTTS-DFIQ, based on asymmetric planar aromatic core indo [( Li et al., 2012; Wang et al., 2020) 2,32,3-b]quinoxaline (IQ) as acceptor unit through tuning side chains with fluorine (F) atom engineering and exemplary alkylthio-thienyl substituted benzodithiophene (BDTTS) donor group, are synthesized and finally employed as the photovoltaic donor materials for fullerene polymer solar cells (PSCs). After blending with PC71BM acceptor, the PBDTTS-DFIQ:PC71BM blend film presented better efficient exciton dissociation and charge extraction, more balanced electron/hole mobility (μh/μe), and nice morphology in comparison with PBDTTS-IQ:PC71BM blend film. Encouragingly, the PBDTTS-DFIQ:PC71BM based PSCs exhibits a higher power conversion efficiency (PCE) of 7.4% than that of the device based on the PBDTTS-IQ:PC71BM blend with a PCE of 4.96%, which thanks to an enhancement of open-circuit voltage (Voc) of 0.84 V, short current density (Jsc) of 13.26 mA cm−2 and fill factor (FF) of 66.00% simultaneously. These results demonstrate that this asymmetric IQ framework is a wonderful acceptor moiety to build light-harvesting copolymers for highly efficient PSCs.  相似文献   

5.
It is an effective way to enhance device performance of polymer solar cells (PSCs) by using a tandem structure that combines two or more solar cells. For tandem PSCs, the buffer layer plays an important role in determining the device performance. The most commonly used buffer layers, such as PEDOT:PSS, TiOx, and ZnO, need thermal treatments that are not beneficial for reducing the fabrication complexity and cost of tandem PSCs. It is necessary to develop tandem PSCs fabricated by a thermal-treatment-free process. In this paper, we report high performance thermal-treatment-free tandem PSCs by developing PFN as buffer layers for both subcells. A power conversion efficiency (PCE) of 10.50% and a high fill factor of 72.44% were achieved by stacking two identical PTB7:PC71BM subcells. When adopting a rear PTB7-Th:PC71BM subcell, the highest PCE of 10.79% was further obtained for the tandem devices. The thermal-treatment-free process is especially applicable to flexible devices, in which plastic substrates are usually used.  相似文献   

6.
We have designed and synthesized two alkylthio substituted benzothiadiazole-quaterthiophene based conjugated polymers (P1 and P2) and investigated their photovoltaic performances. Theoretical simulation has demonstrated that the introduction of alkylthio substituents can increase the planarity of the resulted conjugated polymers. The fluorinated polymer P1 possesses a deeper HOMO energy level than the non-fluorinated polymer P2 and can form well-developed fibril networks when blended with PC71BM. PSCs based on P1:PC71BM (1:1.2, by weight) gave a PCE of 7.76% with a Voc of 0.69 V, a Jsc of 16.30 mA cm−2 and an FF of 0.69. Our results have demonstrated that alkylthiothiophene could be a useful building block for the construction of high efficiency polymer donor materials used for PSCs.  相似文献   

7.
In this communication, we designed two low bandgap D-A copolymers with same fluorinated thiadiazoloquinoxaline (TDQ) as acceptor and different donor units benzo[2,1-b;3,4-b′]dithiophene (P1) and benzo[1,2-b:4,5-b′]dithiophene (P2). P1 and P2 exhibit broad absorption profiles covering from 350 nm to 1150 nm and 350–950 nm, respectively with optical bandgaps of 1.06 eV and 1.18 eV, respectively. Both copolymers showed deep highest occupied molecular orbitals (HOMO), i.e. −5.38 eV and −5.26 eV, for P1 and P2. Their photovoltaic properties were evaluated using conventional devices with a structure of ITO/PEDOT:PSS/copolymer:PC71BM/Al. After the optimizations of the copolymer to PC71BM weight ratios, and concentration of the solvent additive (DIO), the devices showed overall power conversion efficiencies of 4.03% and 5.42% for the P1 and P2 based devices, respectively. The higher value of PCE of the P2 based device is attributed to the higher values of Jsc and FF, that is related to the higher hole mobility and better exciton dissociation efficiency. Although the PCEs of these devices are moderate, these ultra low band gap copolymers can be used for their potential application in tandem polymers solar cells. Finally, methanol treatment of the active layer was adopted to increase the PCE of the P2:PC71BM based polymer solar cells that resulted in an improved PCE up to 6.93%.  相似文献   

8.
Two new two-dimensional conjugated copolymers (named r-PTTDPP50 and r-PTTDPP75) consisting of a diketopyrrolopyrrole (DPP) derivative, thiophene with a conjugated side chain, and 2,5-bis(trimethylstannyl)thiophene were designed and synthesized via Stille cross-coupling reactions for use in bulk heterojunction (BHJ) polymer solar cells (PSCs); the feed-in ratios were varied to obtain the copolymers. It was found that the content of DPP units in the copolymer main chain significantly affected the molecular weight, absorption range, electronic energy level, and morphology of thin films of the copolymers. In the thin-film state, both copolymers exhibited a broad absorption band with two obvious peaks and a vibronic shoulder, as well as an absorption edge for wavelengths of up to 1000 nm. The vibronic shoulder in the absorption spectrum of r-PTTDPP75 was more intense than that in the spectrum of r-PTTDPP50, owing to the presence of a greater number of coplanar DPP units in the former. Electrochemical measurements indicated that the highest occupied molecular orbital (HOMO) energy levels for r-PTTDPP50 and r-PTTDPP75 were −5.16 and −5.19 eV, respectively, while their lowest unoccupied molecular orbital (LUMO) energy levels were −3.89 and −3.99 eV, respectively. On increasing the number of electron-deficient DPP segments in r-PTTDPP75, the LUMO energy level was lowered. Further, its HOMO energy level was also affected. BHJ PSCs composed of the electron-donor copolymers blended with an electron acceptor, namely [6,6],-phenyl-C61-butyric acid methyl ester (PC61BM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), in 1:2 wt ratio were fabricated and characterized. The power conversion efficiency (PCE) of the r-PTTDPP50/PC71BM-based (w/w = 1:2) PSC reached 2.32% for an open-circuit voltage of 0.632 V, short-circuit current of 9.81 mA/cm2, and fill factor of 37.4%, under the illumination of AM 1.5G (100 mW/cm2). Ternary blend BHJ solar cells formed by doping r-PTTDPP50 into the common binary blend of P3HT and PC61BM were also investigated. The optimized r-PTTDPP50:P3HT:PC61BM device exhibited a PCE of 3.85%, which was significantly higher than that of the P3HT:PC61BM device (2.97%).  相似文献   

9.
Two new conjugated D–A polymers P3 (PBTT-d-BTT) and P4 (PBTT-d-TPD) based on same benzo[1,2-b:3,4-b′:6,5-b″] trithiophene (BTT) donor and different acceptors monomers 5,8-dibromo-2-dodecanoylbenzo[1,2-b:3,4-b′:6,5-b″] trithiophene (d-BTT), and 1,3-dibromo-5-(2-ethylhexyl)thieno[3,4]pyrrol-4,6-dione (d-TPD) respectively, were synthesized by Stille cross-coupling reaction and characterized by gel permeation chromatography (GPC), 1H NMR, UV–Vis absorption, thermal analysis and electrochemical cyclic voltammetry (CV) tests. Photovoltaic properties of the polymers were studied by using the polymers as donor and PC71BM as acceptor with a weight ratio of polymer:PC71BM 1:1, 1:2 and 1:2.5. The optimized photovoltaic device was fabricated with an active layer of a blend P3:PC71BM and P4:PC71BM with a blend ratio of 1:2 showed PCE 3.16% and 2.42%, respectively under illumination of AM 1.5 at 100 mW/cm2 with solar simulator. The PCE of the device based on P3:PC71BM processed with DIO/o-DCB has been further improved up to 4.64% with Jsc of 10.52 mA/cm2 and FF of 0.58 attributed to the increase in crystalline nature of active layer and more balanced charge transport in the device, induced by DIO additive.  相似文献   

10.
To explore the influence of fluoro substitution position and number on optical, electrochemical and photovoltaic properties, three novel donor-acceptor (D-A) alternative copolymers (PHF, PFH and PFF) were synthesized by Stille polycondensation of 2,3-diphenyl-5,8-di(thiophen-2-yl)quinoxaline (DTQx) acceptor unit and indacenodithiophene (IDT) donor unit. As films, PHF and PFF comprising two fluoro substituents on the lateral phenyl groups displayed a broad absorption ranging from 350 to 700 nm; whereas PFH containing two fluorine atoms on the polymer main chain exhibited a slightly narrower absorption ranging from 350 to 650 nm. In addition, fluoro substitution on the polymer main chain can lower the HOMO level of the resulted polymers. As expected, PFH and PFF possess deeper HOMO energy level than PHF. Polymer solar cells (PSCs) were fabricated with these three polymers as donor materials and PC71BM as acceptor material. PHF based PSCs gave a power conversion efficiency (PCE) of 7.2% with a Voc of 0.84 V, a Jsc of 12.46 mA/cm2 and an FF of 0.69. And PFH based PSCs showed a PCE of 6.19% with a Voc of 0.93 V, a Jsc of 9.57 mA/cm2 and an FF 0.70. However, a PCE of only 2.9% with a Voc of 0.92 V, a Jsc of 4.61 mA/cm2 and an FF of 0.68 was obtained for PFF based PSCs. Transmission electron microscopy (TEM) and resonant soft X-ray scattering (R-SoXS) studies indicated that the introduction of four fluorine atoms at each repeating unit can spoil the morphology of active layer. These results highlight the importance of fluorination position and number to the performance of PSCs.  相似文献   

11.
The optical and electrical properties of GZO/AgTi/AZO (GATG) multilayer transparent conducting films fabricated by magnetron sputtering method were investigated. The sheet resistance and maximum optical transmittance of GATG films are 5 Ω/sq and 86%, respectively. The sheet resistance of GATG still retains stable under annealing at 400 °C, which shows better thermal stability compared to GZO/Ag/AZO (GAG) film. The enhanced thermal stability of GATG is attributed to the formation of TiOX in Ti doped Ag nanostructure film, which can inhibit Ag atom diffusion and aggregation. PTB7-TH:PC71BM based inverted polymer solar cells (PSCs) with GATG electrode gave PCE of 9.20%, which is comparable to PCE (9.23%) of the control PSCs with ITO electrode. The PCE of PSCs with GATG and ITO electrodes respectively remain 59% and 23% of the original PCE values after UV exposure for 20 min with relativize humidity of 68% in air, indicating that PSCs with GATG show better UV durability. Our results suggest that GATG as an alternative to ITO electrode can obtain efficient inverted PSCs and have stronger anti-UV ability due to its low UV transparency.  相似文献   

12.
We present a ternary strategy to enhance the power conversion efficiency (PCE) of bulk heterojunction polymer solar cells (PSCs) with a bipolar small molecule as cascade material. A bipolar diketopyrrolopyrrole small molecule (F(DPP)2B2), as the second electron acceptor, was incorporated into poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C61-butyric-acidmethyl-ester (PC61BM) blend to fabricate ternary blend PSCs. The introduction of the bipolar compound F(DPP)2B2 can not only broaden the light absorption of the active layer because of its absorption in near infrared region but also play a bridging role between P3HT and PC61BM due to the cascaded energy level structure, thus improving the charge separation and transportation. The optimized ternary PSC with 5 wt% F(DPP)2B2 content delivered a high PCE of 3.92% with a short-circuit current density (Jsc) of 9.63 mA cm−2, an open-circuit voltage (Voc) of 0.62 V and a fill factor (FF) of 64.90%, showing an 23% improvement of PCE as compared to the binary systems based on P3HT:PC61BM (3.18%) or P3HT:F(DPP)2B2 (3.17%). The results indicate that the ternary PSCs with a bipolar compound have the potential to surpass high-performance binary PSCs after carefully device optimization.  相似文献   

13.
Two new 2D-conjugated D-A copolymers, PBDTT-S-DPP and PBDTSe-S-DPP, based on benzodithiophene (BDT) donor unit with alkylthio-thiophene or alkylthio-selenophene conjugated side chains and 2,5-bis(2-butyloctyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (DPP) acceptor unit, were synthesized for the application as donor materials in polymer solar cells (PSCs). The two polymers were characterized by absorption spectroscopy, cyclic voltammetry, thermogravimetric analysis, theoretical calculation with density functional theory, X-ray diffraction and photovoltaic measurements. The results show that the alkylthio-thiophene/selenophene side groups on BDT unit and intramolecular hydrogen bonding interaction in DPP acceptor unit play important roles in affecting the absorption, HOMO energy levels, molecular planarity and the crystallinity of the polymers. The PSCs based on PBDTT-S-DPP or PBDTSe-S-DPP as donor and PC71BM as acceptor demonstrate power conversion efficiency (PCE) of 5.62% and 5.01%, with relatively higher Voc of 0.79 V and 0.76 V, respectively.  相似文献   

14.
In previous studies, PSCs based on polymers with an inward alkyl positioned DTBT unit showed poor power conversion efficiency mainly due to the greatly distorted polymer backbone structure caused by severe steric hindrance between the alkyl groups on the flanking thiophene of DTBT and the BT unit. In this study, PSCs based on polymers with an inward alkyl positioned DTBT unit are markedly improved by controlling the molecular weight and alkyl chain length. Two BDT-DTBTs and one BDT-BT polymers were synthesized by engineering alkylthienyl chains on BDT and by installing these with a short alkyl chain on the inward alkyl positioned DTBT. Extraordinary bathochromic shifts in the absorption maxima at 146 nm for PA and 165 nm for PB were observed going from solution to a solid film state, suggesting great differences in the polymer structures of the two states. Optical and electrochemical measurements were taken, and the HOMO levels of PA, PB, and PC were determined to be −5.76, −5.66, and −5.71 eV, respectively, indicating very low-lying HOMO energy levels. The optimized PSCs based on PA, PB, and PC exhibit power conversion efficiencies (PCEs) of 3.75%, 2.42%, and 2.30%, respectively, with Voc (0.77–0.86 V), Jsc (6.9–8.7 mA/cm2), and FF (38–52%). We believe that the highest PCE for the PSCs based on PA may be attributed to the high molecular weight and improved processability relative to those of PB and PC. A theoretical study suggests that the polymer backbones of PA and PB are highly distorted between the donor unit and the acceptor unit, by as much as 49°, possibly by the steric hindrance between BT and the inward positioned methyl group on the flanking thiophene. Therefore, the conjugations for the HOMO p-orbitals of PA and PB are highly localized throughout the backbone while the conjugations for the HOMO p-orbitals of PC are well delocalized. The AFM study revealed that DIO additive greatly changed the morphology of the polymer blend from an amorphous state into distinct nanoscale phase separated states, leading to a great improvement in PCEs. The XRD study revealed that all polymers are amorphous.  相似文献   

15.
In bulk heterojunction (BHJ) solar cells, the molar mass ratio of donor-acceptor polymers, the annealing temperature (Tan) and the cathode buffer layer plays very consequential role in improving the power conversion efficiency (PCE) by tuning the film morphology and enhancing the charge carrier dynamics. A comprehensive understanding of each of these factors is essential in order to optimize the performance of organic solar cells (OSCs). Albeit there are several fundamental reports regarding these factors, an altogether meticulous correlation of these physical processes with experimental evidence of the photo active layer are required. In this work, we systematically analyzed the influence of different molar mass ratio, the annealing temperature (Tan) and the cathode buffer layer of rrP3HT:PC71BM based BHJ solar cells and their corresponding photovoltaic performances were correlated carefully with their thin film growth structure and energy level diagram. The device having 1:0.8 molar mass ratio of rrP3HT:PC71BM and Tan = 150 °C annealing temperature with Bathocuproine (BCP) as the cathode buffer layer having ITO/PEDOT:PSS/rrP3HT:PC71BM (molar mass ratio = 1:0.8; (Tan = 150 °C)/BCP/Al) configuration showed the best device performance with PCE, ɳ = 4.79%, Jsc = 14.21 mA/cm2, Voc = 0.58 V and FF = 57.8%. This drastic variation in PCE of the device having BCP/Al as the cathode contact compared to the other device configurations is due to the coalesced effects of better hole-blocking capacity of BCP along with Al and better phase separation of the active blend layer at 150 °C annealing temperature. These results explicate the cumulate role of all these physical parameters and their combined contribution to the PCE amendment and overall device performance with rrP3HT:PC71BM based organic BHJ solar cell.  相似文献   

16.
We report the synthesis of a D-A random terpolymer denoted as P2 consists of one thiophene donor unit and three acceptor benzothiadiazole (BT), pyrrolodithienoquinoxalinedione (PDQD) and thiadiazoloquinoxaline (TDQ) units by Stille-coupling reaction and investigated its optical and electrochemical properties. We have compared its properties with the parent copolymer P1. The P2 exhibits bandgap of about 1.18 eV which is lower than that of P1 (1.50 eV), indicating strength of accepting units controls both the optical and electrochemical bandgap. We have used terpolymer P2 as electron donor along with [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) as electron acceptor for the fabrication of solution processed bulk heterojunction polymer solar cells (PSCs). PSC based on an optimized P2:PC71BM (1:2 by weight) active layer processed with 3v % DIO/DCB solution, displayed a power conversion efficiency (PCE) of 7.22%, which is higher than that for P1 based polymer solar cell (PCE = 6.56%) processed under same conditions. The higher value of PCE for P2:PC71BM may be related to more favorable phase separated morphology of active layer as compared to P1:PC71BM, beneficial for the exciton dissociation and charge transport, as evidenced from the larger hole mobility.  相似文献   

17.
In this communication, we report the design a low bandgap D-A copolymer consist of fluorinated thiadiazoloquinoxaline (TDQ) as strong acceptor and benzothiophene (BT), denoted as P(ffFlTDQx-BT) exhibit broad absorption profile covering from 350 nm to 1000 nm with optical bandgap of 1.26 eV. P(ffFlTDQx-BT) showed highest occupied molecular orbital (HOMO) energy level of −5.46 eV which is deeper than that for nonfluorinated counterpart copolymer. The photovoltaic properties were evaluated using conventional devices with a structure of ITO/PEDOT:PSS/P(ffFlTDQx-BT):PC71BM/Al. After the optimizations of the P(ffFlTDQx-BT) to PC71BM weight ratios, and concentration of the solvent additive (DIO), the devices showed overall power conversion efficiency of 7.27%. The higher value of PCE of this device is higher than that of nonfluorinated copolymer (5.80%) is attributed to the higher values of both Jsc and FF, related to the higher hole mobility and better exciton dissociation efficiency. Moreover, employing a low boiling point solvent additive, i.e. o-chlorobenzaldehyde (CBA) (boiling point 132 °C) for active layer deposition and after the optimization of concentration of CBA, the resulted PSC showed overall PCE of 8.10%, which is higher than the PSC based on active processed with DIO/CB, related to the better balanced charge transport, induced by the fast removal of residues of solvent. To our best of our knowledge, PCE of 8.10% is also the highest for the PSCs with low bandgap of below 1.30 eV.  相似文献   

18.
We report on the optical and electrochemical characterization (experimental and theoretical) of two donor substituted benzothiadiazole with different cyano based acceptor π-linkers, tetracyanobutadiene (TCBD) SM1 and dicyanoquinomethane (DCNQ) SM2, and explore them as the donor component for solution processed bulk heterojunction organic solar cells, along with PC71BM as the electron acceptor. The solution bulk heterojunction (BHJ) solar cells based on dichloromethane (DCM) processed active layer with SM1 and SM2 as donor and PC71BM as acceptor achieve power conversion efficiency (PCE) of 2.76% and 3.61%, respectively. The solar cells based on these two small molecules exhibit good Voc, which is attributed to their deep HOMO energy level. The higher PCE of the device based on SM2 compared to SM1 is attributed to the its small bandgap, broader absorption profile and enhanced hole mobility. Additionally, the PCE of the SM2:PC71BM based solar cells processed with 1-chloronaphthalene CN (3 v%)/DCM is further improved reaching upto 4.86%. This increase in PCE has been attributed to the improved nanoscale morphology and more balanced charge transport in the device, due to the solvent additive.  相似文献   

19.
《Organic Electronics》2014,15(7):1545-1551
Indium tin oxide (ITO)-free polymer solar cells (PSCs) with the structure of Glass/tungsten trioxide (WO3)/Au/WO3/PCDTBT: PC70BM/LiF/Al was fabricated and studied. The multilayer structure of WO3/Au/WO3 is used as the potential transparent electrode to replace ITO. Metal resonant microcavity, which can enhance light harvesting of active layers, was constructed between Au and Al electrodes. According to the JV and IPCE characterization with 70 nm active layer, power conversion efficiency (PCE) of the ITO-free microcavity device is approaching 4.55%, which is higher than that of the ITO-based device. However, PCE of the ITO-free device is much lower than that of the ITO-based device when the thickness of active layer increases to 130 nm. The opposite experimental tendency leads to theoretical research toward the simulation of light absorption and optical electric field and the calculation of maximum short circuit current density (Jsc max) as a function of active layer thickness based on ITO-free and ITO-based devices. The research results show that microcavity effect is closely linked to intrinsic absorption of active layers.  相似文献   

20.
A new asymmetric small molecule, named R3T-TBFO, with 4,8-bis(2-ethylhexyloxy)-substituted thieno[2,3-f]benzofuran (TBF) as central donor block, has been synthesized and used as donor material in organic solar cells (OSCs). With thermal annealing (TA) and solvent vapor annealing (SVA) treatment, the blend of R3T-TBFO/PC71BM shows a higher hole mobility of 1.37 × 10−4 cm2 V−1 s−1 and a more balanced charge mobilities. Using a structure of ITO/PEDOT:PSS/R3T-TBFO:PC71BM/ZrAcac/Al, the device with TA treatment delivered a moderate power conversion efficiency (PCE) of 5.63%, while device after TA + SVA treatment showed a preferable PCE of 6.32% with a high fill factor (FF) of 0.72.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号