首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present our optimization of a normally off refractive GaAs/Al xGa1-xAs multiple-quantum-well (MQW) reflection modulator with respect to the on/off reflectance change, on/off contrast ratio, and operating voltage. We use optical transfer matrices, theoretically calculated refractive indices, and absorption coefficients to simulate the operation of a normal-incident Fabry-Perot MQW modulator. Our calculations suggest that a normally off refractive GaAs/Al0.2Ga0.8As MQW reflection modulator with a reflectance change of 42.9% and an on/off contrast ratio of 1539 for an operating voltage of only 2.44 V can be fabricated by molecular-beam epitaxy (MBE)  相似文献   

2.
工作在饱和区的MOSFET存在零温度系数(ZTC)特定工作点,基于这一特性设计实现了一款具有低温度系数的电压基准芯片。所设计的电路利用ZTC工作点的温度系数接近于0这一特点,辅以高阶曲率补偿电路,实现极低温度系数的输出电压。此外,针对ZTC工作点对工艺偏差的敏感性,根据蒙特卡洛仿真结果,专门设计了熔丝修调电路,以保证电路的输出结果具有较高工艺稳定性。该电路在CSMC 0.18μm CMOS工艺平台进行了流片验证,芯片面积为0.0025 mm2。结果表明该芯片在室温时能够稳定输出475.5 mV电压,在-40~125℃内,温度系数达到1.8×10-6/℃,在10 kHz时电源抑制比达到-68.7 dB。  相似文献   

3.
We have adapted a “peel-off” process to structure stacked organic semiconductors (conducting polymers or small molecules) and metal layers for diode microfabrication. The fabricated devices are organic diode rectifier in a coplanar waveguide structure. Unlike conventional lithographic process, this technique does not lead to destroy organic active layers since it does not involve harsh developer or any non-orthogonal solvent that alter the functionality of subsequentially deposited materials.This process also involves recently reported materials, as a p-dopant of an organometallic electron-acceptor Copper (II) trifluoromethanesulfonate, that play the role of hole injection layer in order to enhance the performances of the diode.Comparatively to self-assembled monolayers based optimized structures, the fabricated diodes show higher reproducibility and stability. High rectification ratio for realized pentacene and poly (3-hexylthiophene) diodes up to 106 has been achieved. Their high frequency response has been evaluated by performing theoretical simulations. The results predict operating frequencies of 200 MHz and 50 MHz for pentacene and P3HT diode rectifiers respectively, with an input oscillating voltage of 2 V peak-to-peak, promising for RFID device applications or for GSM band energy harvesting in low-cost IoT objects.  相似文献   

4.
We fabricated organic thin-film transistors (OTFTs) with sub-1 V driving voltage enabled by a hybrid dielectric comprising high-k amorphous titanium oxide (TiOx) and a phosphonic acid self-assembled monolayer (SAM). The p-type OTFTs show a high on/off ratio (105), a near 0 V threshold voltage (−0.09 V), and a high mobility of 1.2 cm2/Vs when operated at 1 V. These OTFTs are readily employed in circuit applications, and we show pseudo-CMOS and CMOS inverters operating at 0.5 V as basic building blocks of low-voltage advanced organic logic circuits. We fabricate a five-stage CMOS ring oscillator that displays clear oscillation characteristics at a driving voltage of 0.5 V to highlight the potential of our hybrid dielectric for ultra-low-voltage integrated plastic circuitry.  相似文献   

5.
报道了利用76.2 mm圆片工艺实现了SiC衬底GaN HEMT微波功率管的研制,并对其进行了多项试验以评估其可靠性.器件工艺中通过引入难熔金属作器件肖特基势垒,有效提高了GaN HEMT器件肖特基势垒的热稳定性,经过500℃高温处理30 s后器件肖特基特性依然保持稳定.随后的高温工作寿命试验表明,该GaNHEMT能够...  相似文献   

6.
《Organic Electronics》2014,15(1):260-265
We investigated the reduction of the operating voltage in organic light-emitting diodes containing WO3 nanoislands. The thickness of the organic layer and the periodicity of the nanoislands were varied in order to quantitatively analyze the electrical changes. The thickness of the N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)-benzidine (NPB) layer was varied from 150 nm to 600 nm, and various periodic nanoislands of 300 nm, 330 nm, and 370 nm were fabricated. Two geometric factors, which are the effective length and effective area, influence the operating voltage. The effective length is determined by the relative thickness of the nanoislands compared with the organic thickness, and the reduction of the operating voltage is linearly proportional to the relative thickness. The effective area is a nonlinear function of periodicity, and the voltage is reduced as the periodicity decreases.  相似文献   

7.
We report about the use of a printed pentafluorothiophenol layer on top of the dielectric surface as a passivation coating to improve the operational stability of all-ink-jet printed transistors. Transistors with bottom-gate structure were fabricated using cross-linked poly-4-vinylphenol (c-PVP) as dielectric layer and an ink formulation of an amorphous triarylamine polymer as semiconductor. The resulting TFTs had low turn-on voltage (Vth < |5 V|) and a mobility ≈0.1 cm2/(V s). A comparison of identically fabricated transistors shows that devices with coated dielectric have a higher operational stability than those using bare c-PVP. This conclusion is supported by a quantitative study of the threshold voltage shift with time under continuous operation. Long exposure to the ambient atmosphere causes an increase in the threshold voltage strongly dependent on the used semiconducting ink formulation.  相似文献   

8.
We investigated the light output power of blue light-emitting diodes (LEDs) fabricated with AgNi contacts as a function of the Ni content. Annealing the AgNi contacts at 400°C in air significantly improved their electrical characteristics. The AgNi samples with 10.0 wt.% Ni showed reflectance of 80.9% at 460 nm, whereas the Ag-only contacts gave 71.1%. After annealing at 400°C, the AgNi contacts exhibited better thermal stability than did the Ag-only contacts. Their current–voltage relationships showed that blue LEDs fabricated with Ag-only contacts gave a forward voltage of 3.33 V at 20 mA, whereas those fabricated with AgNi contacts with 10.0 wt.% Ni produced 3.03 V. LEDs fabricated with the AgNi contacts exhibited output power higher by 5.9% to 19.1% than those with Ag-only contacts. Based on scanning electron microscopy and x-ray photoemission spectroscopy results, the improved thermal and electrical behaviors are described and discussed.  相似文献   

9.
《Organic Electronics》2014,15(2):428-434
An electrochromic device (ECD) can change color absorption when subjected to an appropriate voltage. Such a device includes three components: a working electrode, a counter electrode and an electrolyte. Compatibility of these three components is important for ECD’s stability. In this study, two novel compatible electrochromic materials, cathodic 1-(9-hexyl-9H-carbazole)-1′-(propylphosphonic acid)-4,4′-bipyridilium dichloride and anodic (4-(diphenylamino)phenyl)methylphosphonic acid were designed, synthesized and fabricated into electrochromic electrodes using a chemisorption method. We characterized the electrochromic performance of these two electrodes, including the degree of color change, color changing voltage and charge capacity; the results indicated that they matched each other very well. An electrochromic device fabricated using these two electrodes, as expected, exhibited rapid, vivid color changes and proved highly stable for up to 100,000 cycles.  相似文献   

10.
Semiconductor nanocrystals have attracted wideinter-estsinthe last fewyears because they have high lumi-nescence efficiency and size-tunable band gap character-istics .The semiconductor nanocrystals could be func-tionalized using various surfactants to ma…  相似文献   

11.
Lower operating voltages and faster clock frequencies in advanced fabrication processes increase the circuit delay sensitivity to voltage, temperature, and process variations and modeling approximations. Uncorrelated delay variations along data and clock paths cause timing violations. In this paper, we propose a method for correcting timing violations by in-circuit tuning of clock latencies after fabrication. We introduce adaptive delay sequential elements (ADSEs) that use charge storage on pMOS floating gates to tune the clock latencies of timing critical flip-flops. ADSEs facilitate in-circuit optimization of clock latencies under varying operating conditions. ADSE tuned clock latencies are nonvolatile and can be repeatedly adjusted after fabrication using only electrical signals. We present examples of implicit and explicit pulsed ADSEs and their tuning operations. Our experiments with fabricated prototypes show that ADSEs can tune their clock latencies with picosecond resolution over one-half of the clock period. Our experiments also show that ADSE sensitivities to supply voltage, temperature, noise, and transistor mismatch are comparable to nonadaptive sequential elements. We present experimental data that show ADSE tuned delays change only 15% after ten years at 125degC. We propose a method for selective tuning of embedded ADSEs and demonstrate its application in a fabricated prototype. ADSEs can selectively replace timing-critical flip-flops of a circuit with negligible area impact  相似文献   

12.
We fabricated organic light-emitting diodes (OLEDs) with the thermally activated delayed fluorescence (TADF) material of 4CzIPN, which show better stability compared with the 4,4’-Bis(carbazol-9-yl)biphenyl (CBP) based devices. The half lifetime of the device using 4CzIPN as host material has doubled, and a slower voltage rise compared with that of CBP-based devices has been achieved, which indicates the improvement of stability. We attribute the better stability to the good film morphology and difficult crystallization property of 4CzIPN. Our results suggest that employing the 4CzIPN as host material can be a promising way of fabricating OLEDs with longer operation lifetime.  相似文献   

13.
We have fabricated a multiple-quantum-well (MQW) waveguide optical modulator incorporating tensile strain and quantum well with mass-dependent width (QWMDW) for the first time. The structure was built on a strain relief InAlGaAs buffer layer grown on a GaAs substrate. Polarization-independent modulation with more than -10 dB extinction (at 8 V reverse voltage) was achieved over a very wide operating range, from 858 to 886 nm wavelength.  相似文献   

14.
We have showed that the doping of an organic salt into a PVK-based polymer emissive layer could enhance the carrier balance greatly to result in higher luminance and luminous efficiency. It is found out that the salt-doped devices show the similar operating characteristics of frozen-junction light-emitting electrochemical cells (LECs). With the salt doping of 0.6 wt.% and an appropriate salt activation process, the fabricated PVK-based polymer light-emitting diodes (PLEDs) shows the luminous efficiency of 15 cd/A at the highest luminance of 55,000 cd/m2 even without an electron-injecting LiF layer. Due to the enhanced carrier balance, the luminous efficiency is found to be maintained from the turn-on voltage to the voltage for the maximum luminance, which means a linear relationship between luminance and current density.  相似文献   

15.
We have modeled the breakdown voltage, critical current density and maximum operating frequency of several nitride based high power and high temperature electronic devices. It is found that the minority carrier recombination lifetime and the critical field for electric breakdown are important model parameters which influence device design and performance. Planar geometry GaN Schottky devices were fabricated and used to experimentally estimate these important parameters. Current–voltage measurements have indicated the importance of the non-planar geometries for achieving large breakdown voltages. The minority carrier (hole) diffusion length and recombination lifetime have been measured using the electron beam induced current technique. The measured hole lifetime of 7 ns and estimate for the critical field indicate the possibility of AlGaN based thyristor switch devices operating at 5 kV with current densities up to 200 A/cm2 and at frequency above 2 MHz. The GaN structural and optical material quality as well as processing requirements for etching are also discussed.  相似文献   

16.
通过对硅S波段微波功率双极晶体管的结终端技术实验数据对比和晶体管镇流电阻设计的考虑,提高了微波功率双极器件的击穿电压和电流通过能力及抗烧毁能力。微波器件采用这些技术后,器件的工作频率不但没有降低,反而从原来的S波段的低端(2.25~2.55 GHz),提高到了中高端(3.1~3.5 GHz);器件的集电结反向击穿电压50 V以上的比率由原来的17.6%提高到63.5%;器件的功率增益也从6 dB提高到7.5 dB以上,证明了该工艺方法的有效性与可行性。  相似文献   

17.
For nonvolatile memory devices, capacitors with metal–ferroelectric–metal structures were fabricated using poly(vinylidene fluoride-trifluoroethylene) as a ferroelectric layer, and performance was estimated in terms of retention property. In the same thickness, the polarization retained longer as the writing pulsewidth (PW) was extended. With the same writing PW, a thicker capacitor maintained a polarized state longer. In conclusion, the performance for operating voltage, operating frequency, and data retention time is expected.   相似文献   

18.
The design, fabrication, and characterization of rearrangeable nonblocking 4×4 switch matrices and the development of a novel ITO (indium-tin-oxide)/Au multilayer electrode that leads to low switching voltages and low DC drift is reported. Results on electrode systems, insertion loss, crosstalk, tolerances in the coupling length, and stability obtained for eight fabricated matrices are given. In comparison to the SiO2 buffer layers, a reduction in the switching voltage of a factor of 0.66 has been achieved. Insertion losses of fiber pigtailed modules are in the range between 4 and 7 dB. The crosstalk has still to be improved. The stability of the operating points of the switches has been analyzed, showing that the devices must be operated in closed dark housings with a passivation layer in order to avoid optical damage effects from ambient light and to protect them against physical and chemical influences  相似文献   

19.
This paper addresses the stability problem of diffusion-notch-free (DNF) SRAM cells used in dense last level caches (LLC). A DNF cell eliminates lithographic induced variations due to nMOS diffusion notches used in conventional 6T SRAM cells. However, it also results in reduced overall cell stability. We describe a new WL under-drive (WLUD) circuit that enables a read stable DNF cell with all minimally sized devices (called M-cell). The proposed WLUD circuit is both PT and supply noise tolerant. Write stability is maintained at low voltage thanks to a ${rm V}_{rm CC}$ dynamic voltage collapse (DVC) scheme that trades large dynamic cell retention margin for improving write stability. Another DNF cell, called P-cell, with pMOS pass device and charged high bit-lines is also presented. This cell is inherently read ratio-ed and extra read margin can be obtained through upsizing the nMOS PD without creating a notch as in conventional cell. A ${rm V}_{rm SS}$ DVC circuit is used along the P-cell to recover write stability. Two SRAM macros in 45 nm were fabricated to experiment with the proposed schemes. Both simulation and measurement results confirm that ${sim},$20% WLUD along with proper ${rm V}_{rm CC}$ DVC enables a stable M-cell across a wide voltage range. A low voltage operating window for the P-cell also exists by appropriately selecting pMOS strength, nMOS pull-down size, and ${rm V}_{rm SS}$ DVC.   相似文献   

20.
We present an ultra-low-power, delayed least mean square (DLMS) adaptive filter operating in the subthreshold region for hearing aid applications. Subthreshold operation was accomplished by using a parallel architecture with pseudo nMOS logic style. The parallel architecture enabled us to operate the system at a lower clock rate and reduced supply voltage while maintaining the same throughput. Pseudo nMOS logic operating in the subthreshold region (subpseudo nMOS) provided better power-delay product than subthreshold CMOS (sub-CMOS) logic. Simulation results show that the DLMS adaptive filter can operate at 22 kHz using a 400-mV supply voltage to achieve 91% improvement in power compared to a nonparallel, CMOS implementation. To validate the robust operation of subthreshold logics, a 0.35 /spl mu/m, 23.1 kHz, 21.4 nW, 8/spl times/8 carry save array multiplier test chip was fabricated where an adaptive body biasing scheme is used for compensating process, supply and temperature variations. The test chip showed stable operation at a supply voltage of 0.30 V, which is even lower than the threshold voltages of the pMOS (0.82 V) and nMOS (0.67 V) transistors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号