首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we develop four diketopyrrolopyrrole-based polymer acceptors for application in polymer-polymer solar cells. The polymer acceptors contain different-sized aromatic units, from small thiophene to benzodithiophene and large alkylthio-benzodithiophene units. Although the polymer acceptor with large-sized groups shows small LUMO offset and low energy loss when blended with the donor polymer PTB7-Th, the corresponding solar cells can achieve a high power conversion efficiency (PCE) of 3.1% due to high photocurrent. In contrast, the polymer acceptor with small thiophene units only provides a low PCE of 0.14% in solar cells. These results indicate that polymer acceptors with large-sized aromatic units can be potentially used into high performance non-fullerene solar cells.  相似文献   

2.
We designed and synthesized a small molecule acenaphtho[1,2-b]quinoxaline diimide derivative AQI-T2 as an electron-accepting material for non-fullerene organic solar cells. This molecule exhibits a relatively broad absorption band from 300 to 650 nm, with a moderately low-lying lowest unoccupied molecular orbital energy level of −3.64 eV. Non-fullerene organic solar cells with conventional structure using PTB7-Th as the electron donor and AQI-T2 as the electron acceptor exhibited moderate photovoltaic performances. The best performance was attained from the pristine device, which showed a power conversion efficiency of 0.77% with a relatively high open-circuit voltage of 0.86 V, a short circuit current of 2.04 mA cm−2 and a fill factor of 43.98%. These results indicated that this n-type molecule can be a promising electron-accepting material for non-fullerene organic solar cells.  相似文献   

3.
Blend morphology is crucial for the efficiency and stability of organic solar cells. Exploring and understanding the correlations between is meaningful and greatly desired. In this work, based on polymer donor (PTB7-Th), fullerene and non-fullerene acceptors (PC71BM and Y6), we systematically study the influence of ternary strategy and solvent system on device performance and stability. It is found that insufficient and excessive phase separation of blend could result in the depressed performance of corresponding devices. Appropriate phase separation/blend morphology can be achieved by utilizing a ternary strategy or suitable solvent. Chloroform-processed ternary blend PTB7-Th:Y6:PC71BM delivers efficiency of 9.55%, with dramatically enhanced JSC of 24.68 mA cm−2 due to optimized absorption, blend morphology and optoelectronic properties. More importantly, superior device stability is demonstrated for the optimal ternary device under both thermal stress and maximum power point operation, by maintaining 80% of initial efficiency at 85 °C for 880 h and presenting almost zero efficiency decay in 200 h under MPP operation.  相似文献   

4.
Two molecules based on triptycene and perylene diimide (PDI) were designed and synthesized as non-fullerene acceptors for organic solar cells (OSCs). The bay-substituted and the imide-substituted molecules, named as TPBA and TPI, respectively, have rigid three-dimensional backbones, which improved the morphological compatibility with the donor polymers. TPBA and TPI exhibit suitable energy levels as acceptors and efficient absorption in the range of 450–600 nm. Their blended films with PTB7-Th displayed power conversion efficiencies of 2.80% and 3.64%, respectively.  相似文献   

5.
In organic solar cells, photogenerated singlet excitons form charge transfer (CT) complexes, which subsequently split into free charge carriers. Here, the contributions of excess energy and molecular quadrupole moments to the charge separation process are considered. The charge photogeneration in two separate bulk heterojunction systems consisting of the polymer donor PTB7-Th and two non-fullerene acceptors, ITIC and h-ITIC, is investigated. CT state dissociation in these donor–acceptor systems is monitored by charge density decay dynamics obtained from transient absorption experiments. The electric field dependence of charge carrier generation is studied at different excitation energies by time delayed collection field (TDCF) and sensitive steady-state photocurrent measurements. Upon excitation below the optical gap, free charge carrier generation becomes less field dependent with increasing photon energy, which challenges the view of charge photogeneration proceeding through energetically lowest CT states. The average distance between electron–hole pairs at the donor–acceptor interface is determined from empirical fits to the TDCF data. The delocalization of CT states is larger in PTB7-Th:ITIC, the system with larger molecular quadrupole moment, indicating the sizeable effect of the electrostatic potential at the donor–acceptor interface on the dissociation of CT complexes.  相似文献   

6.
Slot-die (SD) coating is used to fabricate fully solution processed organic solar cells (OSCs) based on a blend of high performance donor polymer (PTB7-Th) and a non-fullerene acceptor (IEICO-4F) for stable devices over extended periods of operation. The optimization of a sequential deposition process of transport and active layers, under ambient conditions, enable high efficiency slot-die coated solar cells with remarkable power conversion efficiencies (PCE) > 11.0% to bridge the gap between lab-to-fab. Fully slot-die coated inverted OSCs are demonstrated with efficiencies reaching 11% along with 1 cm2 devices, proving the scalability and reproducibility of the proposed technique. Further, replacing the evaporated Ag electrode with solution processed Ag nanowire (AgNW) electrodes shows the highest light utilization efficiency of 5.26% for semi-transparent OSC with a PCE of 9.07% and average visible transmission of 58%.  相似文献   

7.
Four acceptor1-acceptor2-donor-acceptor2-acceptor1 (A1-A2-D-A2-A1) structural electron acceptors with different end-chains were designed and synthesized which all possessed indacenodithiophene (IDT) core, benzothiadiazole (BT) bridge as acceptor2, and rhodanine (R) end groups as acceptor1. The non-fullerene acceptor attached with ethyl group is called IDT-BT-R2 and used as control compound. And the other three of them are attached with methoxymethyl, trifluoroethyl and 1-piperidino groups generating IDT-BT-RO, IDT-BT-RF3 and IDT-BT-RN, respectively. The influence of end-chains on their optoelectronic properties were compared between four non-fullerene acceptors. Compared with IDT-BT-R2, the molecule IDT-BT-RF3 show red-shifted light absorption and lower LUMO level because of the electron withdrawing property of fluorine atoms. OSCs based on IDT-BT-RF3 display more efficient charge separation and lower degree of monomolecular recombination, allowing OSCs to show higher short-circuit current (Jsc) than the system of IDT-BT-R2. OSCs based on IDT-BT-RO also show more efficient charge separation and less monomolecular recombination. Due to the elevated LUMO level of the acceptor IDT-BT-RN, organic solar cells (OSCs) utilizing this material as acceptor display high open-circuit voltage (Voc) of 1.10 eV and low energy loss of 0.49 eV when maintaining a relatively high power conversion efficiency (PCE) of 7.09%. We demonstrated that the end-chain engineering could finely tune the light absorption properties and energy levels of novel non-fullerene acceptors and eventually improved OSCs performance can be harvested.  相似文献   

8.
The flexibility in structural design of organic semiconductors endows organic solar cells (OSCs) not only great function-tunabilities, but also high potential toward practical application. In this work, four simple and low-cost non-fullerene acceptors with fluorene or carbazole as central cores, 2-(6-oxo-5,6-dihydro-4H-cyclopenta[c] thiophen-4-ylidene)malononitrile (TC) as terminal groups, and thiophene or furan as linkers, named DTC-T-F, DTC-F-F, DTC-T-C and DTC-F-C, are developed through twostep synthesis, and their photophysical properties, electrochemical behavior and photovoltaic performance are systematically and comparatively studied. The results revealed that fluorene-based acceptors exhibited superior photophysical properties and morphology characteristics than carbazole-based counterparts, and thiophene is more suitable as bridging groups. Combining the advantages of both, the BHJ-OSC based on PTB7-Th:DTC-T-F blend film showed a high PCE of 8.8%, with a Voc of 0.78 V, a Jsc of 17.46 mA cm−2, and an FF of 0.65, which is the highest value in the PTB7-Th and fluorene-based acceptors coupled devices, implying its potential application.  相似文献   

9.
Diketopyrrolopyrrole (DPP)-based conjugated polymers have been successfully applied in high performance field-effect transistors and fullerene-based solar cells, but show limited application in non-fullerene solar cells. In this work, we use four DPP polymers as electron donor and a perylene bisimide dye as electron acceptor to construct non-fullerene solar cells. The donors and acceptor have complementary absorption spectra in visible and near-infrared region, resulting in broad photo-response from 300 nm to 1000 nm. The solar cells were found to provide relatively low power conversion efficiencies of 1.6–2.6%, which was mainly due to low photocurrent and fill factor. Further investigation reveals that the low performance is originated from the high charge recombination in photo-active layers. Our systematical studies will help better understand the non-fullerene solar cells based on DPP polymers and inspire new researches toward efficient non-fullerene solar cells with broad photo-response.  相似文献   

10.
Nanocomposite buffer layer based on metal oxide and polymer is merging as a novel buffer layer for organic solar cells, which combines the high charge carrier mobility of metal oxide and good film formation properties of polymer. In this work, a nanocomposite of zinc oxide and a commercialized available polyethylenimine (PEI) was developed and used as the cathode buffer layer (CBL) for the inverted organic solar cells and p-i-n heterojunction perovskite solar cells. The cooperation of PEI in nano ZnO offers a good film forming ability of the composite material, which is an advantage in device fabrication. In addition, power conversion efficiency (PCE) of the ZnO:PEI CBL based device was also improved when compared to that of ZnO-only and PEI-only devices. The highest PCE of P3HT:PC61BM and PTB7-Th:PC61BM devices reached to 3.57% and 8.16%, respectively. More importantly, there is no obvious device performance loss with the increase of the layer thickness of ZnO:PEI CBL to 60 nm in organic solar cells, which is in contrast to the PEI based devices, whose device performance decreases dramatically when the PEI layer thickness is higher than 6 nm. Such a nano composite material is also applicable in inverted heterojunction perovskite solar cells. A PCE of 11.76% was achieved for the perovskite solar cell with a thick ZnO:PEI CBL (150 nm) CBL, which is around 1.71% higher than that of the reference cell without CBL, or with ZnO CBL. In addition, stability of the organic and perovskite solar cells having ZnO:PEI CBL was also found to be improved in comparison with that of PEI based device.  相似文献   

11.
Two non-fullerene acceptors, PNDIT-20 and PNDIT-16, based on naphthalenediimide (NDI) and thiophene comonomers, have been synthesized for all polymer solar cells (all-PSCs) application. The incorporation of long alkyl chains onto the NDI units endows the polymers with excellent solubility in both halogen and non-halogen solvents. Halogen-free solvents, e.g. 1,3,5-trimethylbenzene (1,3,5-TMB), 1,2,4-trimethylbenzene (1,2,4-TMB), and 1,2-dimethylbenzene (1,2-DMB), have been employed to fabricate all-PSCs based on PNDIT-20 or PNDIT-16 paired with a donor polymer PTB7-Th without use of additives or post-treatment. The devices using 1,2-DMB as the solvent demonstrated PCEs of 3.88% and 4.94% for PNDIT-20 and PNDIT-16, respectively, which are among the highest values reported for PNDIT-based all-PSCs produced using environmentally friendly solvent. The performance is superior than the control device fabricated from conventional but hazardous 1,2-dichlorobenzene (1,2-DCB). Space-charge-limited current (SCLC) measurements and active layer morphological investigation revealed that non-halogenated solvent processed devices show higher and more balanced hole and electron mobilities as well as favorable surface morphology for charge transfer. The results reported in this work suggest that non-halogenated solvents for all-PSCs processing are greatly promising for the development of high performance all-PSCs.  相似文献   

12.
It is an effective way to enhance device performance of polymer solar cells (PSCs) by using a tandem structure that combines two or more solar cells. For tandem PSCs, the buffer layer plays an important role in determining the device performance. The most commonly used buffer layers, such as PEDOT:PSS, TiOx, and ZnO, need thermal treatments that are not beneficial for reducing the fabrication complexity and cost of tandem PSCs. It is necessary to develop tandem PSCs fabricated by a thermal-treatment-free process. In this paper, we report high performance thermal-treatment-free tandem PSCs by developing PFN as buffer layers for both subcells. A power conversion efficiency (PCE) of 10.50% and a high fill factor of 72.44% were achieved by stacking two identical PTB7:PC71BM subcells. When adopting a rear PTB7-Th:PC71BM subcell, the highest PCE of 10.79% was further obtained for the tandem devices. The thermal-treatment-free process is especially applicable to flexible devices, in which plastic substrates are usually used.  相似文献   

13.
Developing organic solar cells (OSCs) based on a ternary active layer is one of the most effective approaches to maximize light harvesting and improve their photovoltaic performance. However, this strategy meets very limited success in all-polymer solar cells (all-PSCs) due to the scarcity of narrow bandgap polymer acceptors and the challenge of morphology optimization. In fact, the power conversion efficiencies (PCEs) of ternary all-PSCs even lag behind binary all-PSCs. Herein, highly efficient ternary all-PSCs are realized based on an ultranarrow bandgap (ultra-NBG) polymer acceptor DCNBT-TPC, a medium bandgap polymer donor PTB7-Th, and a wide bandgap polymer donor PBDB-T. The optimized ternary all-PSCs yield an excellent PCE of 12.1% with a remarkable short-circuit current density of 21.9 mA cm−2. In fact, this PCE is the highest value reported for ternary all-PSCs and is much higher than those of the corresponding binary all-PSCs. Moreover, the optimized ternary all-PSCs show a photostability with ≈ 68% of the initial PCE retained after 400 h illumination, which is more stable than the binary all-PSCs. This work demonstrates that the utilization of a ternary all-polymer system based on ultra-NBG polymer acceptor blended with compatible polymer donors is an effective strategy to advance the field of all-PSCs.  相似文献   

14.
Ternary organic solar cells (OSCs) are burgeoning as one of the effective strategies to achieve high power conversion efficiencies (PCEs) by incorporating a third component with a complementary absorption into the binary blends. In this study, we presented a new two-dimension-conjugated small molecule denoted by DR3TBDTTVT, which alone gave rise to a best PCE of 5.71% with acceptor PC71BM as active layer. Given the complementary absorption with PTB7-Th, DR3TBDTTVT was doped into (PTB7-Th:PC71BM)-based binary blends, and ternary OSCs were developed. The ternary OSCs with 10 wt% of DR3TBDTTVT displayed improved hole-mobility, reduced device resistance and better phase separation of active layer, thus leading to an impressive PCE of 7.77% with open-circuit voltage of 0.77 V, short-circuit density of 14.52 mA cm−2 and fill factor of 70.3%. Ternary OSCs well make up for the light-harvesting insufficiency of binary OSCs, and this research provides a new material for the improvement of PCEs for single-junction OSCs.  相似文献   

15.
Near-infrared organic photodetectors (NIR OPDs) comprising ultra-narrow bandgap non-fullerene acceptors (NFA, over 1000 nm) typically exhibit high dark current density under applied reverse bias. Therefore, suppression of dark current density is crucial to achieve high-performance of such NIR OPDs. Herein, cyano (CN) with a strong electron-withdrawing property is introduced into alkoxy thiophene as a π-bridge to adjust its optoelectronic characteristics, and the correlation between dark current density and charge injection barrier is investigated. Compared with their motivated NFA (COTH), the novel CN-substituted NFAs, COTCN and COTCN2, exhibited deeper-lying highest occupied molecular orbital energy levels and narrower optical bandgap (<1.10 eV), owing to the strong inductive and resonance effect of CN. The dark current and total noise currents are minimized as the number of substituted CN increases because of the larger hole injection barrier. Consequently, PTB7-Th:COTCN2 exhibited the best shot-noise limited detectivity (D*sh, 1.18 × 1012 Jones) and total noise detectivity (D*n, 1.33 × 1011 Jones) compared with those of PTB7-Th:COTH (D*sh, 2.47 × 1011 Jones and D*n, 1.96 × 1010 Jones).  相似文献   

16.
Ternary bulk heterojunctions (BHJs) are promising candidates that can improve the power conversion efficiencies (PCEs) of organic solar cells (OSCs). In this paper, a ternary OSC with two donors, including one wide bandgap polymer poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT), one low bandgap polymer Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th), and one acceptor [6,6]-phenyl C70 butyric acid methyl ester (PC70BM), is fabricated in atmospheric conditions. By incorporating a 20% content of PCDTBT, an optimized PCE of 7.86% for ternary OSC is characterized by a short-circuit current density (Jsc) of 15.21 mA cm−2, a fill factor of 69.70% and an open-circuit voltage (Voc) of 0.74 V. The Voc values increased steadily from 0.73 to 0.86 V as the increase of PCDTBT fraction, which indicates that the Voc of ternary OSC is not limited by the smallest one of the corresponding binary OSC. We show that the Jsc of the ternary OSC is better than those of the binary OSC in virtue of the complementary polymer absorption and cascade energy levels, as well as optimized morphology of the ternary system. Furthermore, the lifetime of the devices with PCDTBT is greatly enhanced. This work indicates that two donors (PTB7-Th/PCDTBT) ternary BHJs system provide a simple and effective method to improve the performance and also the stability of OSCs.  相似文献   

17.
As an effective molecular modification strategy, side chain engineering has been widely used in promoting the photovoltaic performance of non-fullerene acceptors. Herein, a novel non-fullerene small molecular acceptor i-IEOSi-4F comprising siloxane-terminated alkoxyl side chain was successfully designed and synthesized. The molecule shows an optical band gap of 1.53 eV, with large extinction coefficient of 2.36 × 105 M−1 cm−1 in solution. Two fluorobenzotriazole based polymers J52 and PBZ-2Si with the same backbone units but different side chains were employed as the donor to construct the active layers that all can demonstrate suitable energy levels and complementary absorptions with i-IEOSi-4F. Relative to J52 only bearing alkyl side chain, PBZ-2Si with siloxane-terminated side chain could induce more balanced carrier transports and more favorable morphology, leading to a higher power conversion efficiency (PCE) of 12.66% with a good fill factor of 71.45%. The efficiency is 21% higher than that of 10.46% for the J52 based devices. Our results not only indicate that siloxane-terminated alkoxyl side chain is valuable for efficient non-fullerene acceptors, but also demonstrate that siloxane-terminated side chain on both polymer donor and small molecular acceptor is a useful combination to realize more efficient polymer solar cells.  相似文献   

18.
Molybdenum oxide (MoOx) has been widely used as a hole transport layer in organic photovoltaic cells (OPVs), whose performance can be improved by inserting a MoOx layer between an organic active layer and a transparent anode because of efficient carrier dissociation. In this study, the influence of thermally annealed MoOx on the photovoltaic performance of OPVs was first investigated using low-bandgap polymer and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend films as the active layer. We used three low-bandgap polymers: poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT), poly(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl) (PTB7), and poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b,3,3-b]dithiophene]3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl) (PTB7-Th). Power conversion efficiencies were drastically increased for all investigated polymers when the as-deposited MoOx layer was annealed at 160 °C for 5 min. In particular, a high efficiency of 6.57% was achieved when PTB7 was used; for comparison, the efficiency of a reference device with an as-deposited MoOx layer (not subjected to annealing) was 1.40%. Specifically, the short-circuit current density and fill factor were remarkably improved after annealing, which means that efficient carrier dissociation was achieved in the active layer. We evaluated optical absorption and surface morphology to elucidate reasons behind the improved photovoltaic performance, and these parameters only slightly changed after annealing. In contrast, angle-dependent X-ray photoelectron spectroscopy revealed that the MoOx layer was oxidized after annealing. In general, the oxygen vacancies of MoOx act as carrier traps; a reduction in the number of carrier traps causes high hole mobility in the organic layer, which, in turn, results in an improved photovoltaic performance. Therefore, our results indicate that the annealing-induced oxidation of MoOx is useful for achieving high photovoltaic performance.  相似文献   

19.
In a high performance PTB7:PC71BM bulk-heterojunction (BHJ) solar cell, the commonly optimized polymer:fullerene (D:A) weight ratio is about 1:1.5, when PC71BM is used as the acceptor. This report explores alternative D:A weight ratios. We describe how to enrich the polymer contents of these BHJ solar cells to achieve high power conversion efficiencies (PCEs). The concentration of 1,8-diiodooctane (DIO), a solvent additive for the BHJ precursor solutions, is increased in order to re-optimize the BHJ cells. The PCEs of the re-optimized cells are improved for the PTB7 cells. Detailed charge transport measurements were carried out to examine the polymer-rich BHJs. We observed enhanced hole mobilities for the PTB7 BHJs. Additionally, the electron mobilities are preserved due to the dispersion of fullerene domains by increased DIO concentrations. Two other well-known polymer donors PCDTBT and PDTSTPD have been also investigated, and the improvements of hole mobilities and PCEs can be obtained for both polymer-rich BHJ solar cells.  相似文献   

20.
The impact of alkyl chain length of different additives, such as 1,4-diiodobutane (DIB), 1,6-diiodohexane (DIH), 1,8-diiodooctane (DIO) and 1,10-diiododecane (DID), on the PC71BM distribution in PTB7:PC71BM-based polymer solar cells, is systematically investigated, for the first time. Among these additives, DIO is found to have the optimum alkyl chain length that maximizes the performance of PTB7:PC71BM based polymer solar cells, attaining a power conversion efficiency as high as 8.84%, which is almost four times higher than that without any additives. For DID additives (longer alkyl chain length than DIO), a drop in efficiency to 7.91% was observed. Experimental investigations show that the microstructure of the bulk and the surface layer as well as the surface morphology of the PTB7:PC71BM polymer film can be controlled simultaneously by varying the alkyl chain length of additives. Results also show that the substantial improvement in performance is attributed to the improved 1) phase segregation, 2) PC71BM distribution uniformity in the bulk of the PTB7:PC71BM film, 3) surface smoothness and 4) high PTB7 content at the interface between the active layer and the top electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号