首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Organic Electronics》2014,15(5):1035-1042
We report the development and application of high-quality zinc oxide nanoparticles (ZnO NPs) processed in air for stable inverted bulk heterojunction solar cells as an electron extraction layer (EEL). The ZnO NPs (average size ∼11 nm) were dispersed in chloroform and stabilized by propylamine (PA). We demonstrated that the ZnO NP dispersion with 4 vol.% of PA as stabilizer can be used in air directly and remains clear up to one month after preparation. Our inverted solar cells consisted of a blade-coated poly(N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole (PCDTBT) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) (1: 4 by weight) active layer sandwiched between a ZnO electron extraction layer and a MoO3/Ag anode. All solar cells with ZnO films fabricated in air using PA-stabilized ZnO dispersions prepared within a time window of one month exhibited power conversion efficiencies (PCE) above 4%. In contrast, if the ZnO film was prepared in air using regular un-stabilized ZnO NP dispersion, the PCE would drop to 0.2% due to poor film quality. More interestingly, X-ray photoelectron spectroscopy and nuclear magnetic resonance measurements indicated that the PA ligands were not covalently bonded to ZnO NPs and did not exist in the deposited ZnO films. The spin-cast ZnO thin films (without any thermal treatment) are insoluble in organic solvents and can be directly used as an EEL in solar cells. This feature is beneficial for fabricating organic solar cells on flexible polymer substrates. More importantly, our non-encapsulated inverted solar cells are highly stable with their PCEs remaining unchanged after being stored in air for 50 days.  相似文献   

2.
This paper presents a high efficiency (~3.8%) inverted organic photovoltaic devices based on a P3HT:PCBM bulk heterojunction (BHJ) blend with improved electron- and hole-selective contact layers. Zinc oxide (ZnO) nanoparticle films with different thicknesses are deposited on the transparent electrodes as a nano-porous electron-selective contact layer. A thin gold film is used between the BHJ photoactive layer and the poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), which improves the wettability and significantly enhances the stability of the device (>50 days of air exposure). Photovoltaic device parameters such as power conversion efficiency (PCE) and external quantum efficiency (EQE) are systematically examined for inverted devices with different thicknesses of ZnO and gold layers in comparison to the non-inverted and reference inverted devices with no contact layers. The optimized organic devices with ZnO and Au contact layers show exceptional short circuit currents (in excess of 13 mA/cm2), in comparison to the reference devices, which is related to increased quantum efficiency of the device observed in measured EQE experiments. These results are important for development of high efficiency and stable all-printed organic solar cells and point out the role of contact layers, in particular, ZnO conductivity and morphology in the device performance.  相似文献   

3.
We demonstrate the usefulness of RF magnetron sputtering ZnO thin film at softening temperature, as interfacial barrier layer in air stable flexible inverted organic photovoltaic devices. We investigate the influence of annealing on the ZnO crystallinity, on the ITO substrate morphology and charge transport at the ZnO/active layer interface. The photo-physical and structural characteristics of P3HT beside ZnO interfacial layer and the photovoltaic device performances were also studied using UV–vis spectroscopy, photoluminescence (PL) and J-V characteristic. Finally, we study the interfacial stability of devices with and without ZnO interfacial layer in both normal and inverted structure OPVs. We show that under optimized sputtering conditions, higher order and orientation structure of P3HT, the ZnO thermally annealed beside active layer offers better efficiency of contact between the active layer and interfacial layer. We also show that ZnO annealed at a softening temperature of 180 °C is functional for both photovoltaic devices (rigid and plastic substrates), leading to improved performance and stability of plastic solar cell devices.  相似文献   

4.
Zinc oxide (ZnO) has recently shown to be of considerable interest for the development of interfacial buffer layers in inverted organic solar cells (OSCs). High quality ZnO thin films can indeed be prepared on large-area ITO-coated flexible substrates, using low temperature deposition techniques such as sputtering, a compatible technique with roll-to-roll process. However, further studies are still needed for a better understanding of the influence of the flexible substrate properties on the photovoltaic performances of those devices. In this work, ZnO films have been sputtered on ITO-coated flexible (PEN) substrates and annealed at different temperatures. The role of the surface morphology and the crystalline quality of ZnO films has been investigated. In the window of flexible compatible process, we found that moderate annealing temperatures of ZnO (?180 °C) lead to improved structural properties and performances. Interestingly, we achieve optimal performances for an annealing temperature of 160 °C, resulting in power conversion efficiency (PCE) equivalent to the highest performances usually achieved on rigid cells.  相似文献   

5.
6.
Photo-conversion efficiency of inverted polymer solar cells incorporating pulsed laser deposited ZnO electron transport layer have been found to significantly increase from 0.8% to up to 3.3% as the film thickness increased from 4 nm to 100 nm. While the ZnO film thickness was found to have little influence on the morphology of the resultant ZnO films, the band structure of ZnO was found to evolve only for films of thickness 25 nm or more and this was accompanied by a significant reduction of 0.4 eV in the workfunction. The films became more oxygen deficient with increased thickness, as found from X-ray photoelectron spectroscopy (XPS) and valence band XPS (VBXPS). We attribute the strong dependence of device performance to the zinc to oxygen stoichiometry within the ZnO layers, leading to improvement in the band structure of ZnO with increased thickness.  相似文献   

7.
The properties of solution-processed Al2O3 thin films annealed at different temperatures were thoroughly studied through thermogravimetry–differential thermal analysis, UV–vis-NIR spectrophotometer measurements, scanning electron microscopy, X-ray diffraction, atomic force microscopy and a series of electrical measurements. The solution-processed ZnInSnO thin films transistors (TFTs) with the prepared Al2O3 dielectric were annealed at different temperatures. The TFTs annealed at 600 °C have displayed excellent electrical performance such as the field-effect mobility of 116.9 cm2 V−1 s−1 and a subthreshold slope of 93.3 mV/dec. The performance of TFT device could be controlled by adjusting the annealing temperature. The results of two-dimensional device simulations demonstrate that the improvement of device performance are closely related with the reduction of interface defects between channel and dielectric and subgap density of stats (DOS) in the channel layer.  相似文献   

8.
Ga-doped ZnO(GZO) is investigated as an electron transport layer in organic solar cells based on a promising donor: acceptor system of poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldode-cyl)-2,2′; 5′,2″; -5″,2‴-quaterthio-phen-5,5‴-diyl)] (PffBT4T-2OD):phenyl-C71-butyric acid methyl ester (PC70BM). With the inverted geometry having a configuration of ITO/GZO (40 nm)/PffBT4T-2OD:PC70BM (270 nm)/MoO3 (20 nm)/Al (100 nm), maximum power conversion efficiency (PCE) of 9.74% has been achieved, while it is limited at 8.72% for devices with undoped ZnO. Our study based on the structural, morphological, compositional, and electrical characterizations indicate that suggests enhanced device performance of the GZO-based devices resulted mainly from the improved electrical properties of Ga-ZnO thin films as compared to undoped ZnO.  相似文献   

9.
Zinc oxide (ZnO) films were prepared successfully by simple thermal evaporation of zinc acetate dihydrate at low temperature onto FTO (fluorine-doped tin oxide) glass substrates coated with thin ZnO seed layer. The synthetic parameter such as temperature was found to determine the morphology of nanostructures. ZnO nanorod (NR) and nanoparticle (NP) films have been synthesized at 245 and 350 °C, respectively, for 6 h. The dye-sensitized solar cells (DSSCs) were fabricated using the ZnO nanostructure films as photosensitized electrodes. A maximum photoelectric conversion efficiency (PCE) of 1.56%, and short-circuit photocurrent density of 5.12 mA/cm2 were achieved with the ZnO NP-based DSSC. The PCE increase was ascribed to the reduced recombination loss and prolonged electron lifetime according to electrochemical impedance spectroscopy (EIS).  相似文献   

10.
We present low cost hydrothermally deposited uniform zinc oxide (ZnO) nanorods with high haze ratios for the a-Si thin film solar cells. The problem of low transmittance and conductivity of hydrothermally deposited ZnO nanorods was overcome by using RF magnetron sputtered aluminum doped zinc oxide (ZnO:Al ~300 nm) films as a seed layer. The length and diameters of the ZnO nanorods were controlled by varying growth times from 1 to 4 h. The length of the ZnO nanorods was varied from 1 to 1.5 µm, while the diameter was kept larger than 300 nm to obtain various aspect ratios. The uniform ZnO nanorods showed higher transmittance (~89.07%) and haze ratio in the visible wavelength region. We also observed that the large diameters (>300 nm) and average aspect ratio (3–4) of ZnO nanorods favored the light scattering in the longer wavelength region. Therefore, we proposed uniformly deposited ZnO nanorods with high haze ratio for the future low cost and large area amorphous silicon thin film solar cells.  相似文献   

11.
PEDOT:PSS is one of the most widely used hole transporting layer for inverted perovskite solar cells. Yet the performances of the corresponding perovskite solar cells are not satisfactory. Here, we demonstrate that KCl modified PEDOT:PSS film can promote the crystallization of perovskite film and enlarge the perovskite crystals. At the same time, KCl can diffuse into the perovskite film and effectively passivate the defects. As a result, inverted perovskite solar cells fabricated on 10 mg mL−1 PEDOT:PSS/KCl films exhibit an average power conversion efficiency of 16.24 %, which is enhanced by 17.77 % compared with the reference perovskite solar cells. Open circuit voltage of 1.009 V and power conversion efficiency of 17.09 % have also been demonstrated using the optimized 10 mg mL−1 PEDOT:PSS/KCl films.  相似文献   

12.
Highly sensitive CO gas sensors based on heterocontacts of ZnO:Al on La0.8Sr0.2Co0.5Ni0.5O3 (LSCNO) were fabricated successfully. La0.8Sr0.2Co0.5Ni0.5O3 thin films were coated on (100) silicon wafers by a sol-gel method including the Pechini process followed by a spin-coating procedure. Then, ZnO:Al films prepared by radiofrequency (RF) magnetron sputtering at various oxygen partial pressures and deposited on as-deposited La0.8Sr0.2Co0.5Ni0.5O3 films were investigated. The results revealed that the CO sensing ability of the film prepared with the ratio of O2/Ar = 5/5 (ratio of volume flow rate) was the worst, owing to the highest (002) plane orientation in the ZnO:Al film. In contrast, the ZnO:Al film prepared with O2/Ar = 3/7 exhibited better CO sensitivity. Furthermore, all two-layer samples showed higher CO sensitivities than single-layer samples. The CO sensitivity of ZnO:Al/La0.8Sr0.2Co0.5Ni0.5O3 thin film was 45% for 500 ppm CO at a sensing temperature of 200°C.  相似文献   

13.
采用sol-gel法在石英衬底上制备了ZnO薄膜,通过改变溶胶浓度、涂敷层数及退火温度,研究了ZnO薄膜的形貌、结构性能及光学性能。结果表明,薄膜具有六方纤锌矿结构,表面均匀致密,晶粒大小在25~35nm之间,Zn含量为0.8mol/L的溶胶经旋涂并在500℃下退火1h后可获得最高的可见光透射率,平均透射率约为94%。获得的ZnO薄膜的光学带隙在3.27~3.29eV之间。  相似文献   

14.
The effects of zinc oxide (ZnO) fabricating process on the performance of the inverted bulk heterojunction (BHJ) solar cells were explored in this study. The ZnO layers were prepared by either sputtering or solution-processed method. These ZnO films on the indium tin oxide (ITO) substrates were used as the cathode of the inverted solar cells. It was found that the topography of the ZnO films played a leading role on the device performance. The devices based on solution-processed ZnO films displayed better electric output compared with that of sputtered ones. The measurement of capacitance against bias voltage indicated that ZnO film with certain degree of roughness exhibited high charge extraction efficiency, which resulted in improved device performance. The measurement of ultraviolet photoelectron spectroscopy revealed that a shift of work function was observed due to the fabricating process of ZnO films.  相似文献   

15.
Sol-gel preparation of transparent conducting ZnO/Cu/ZnO multilayer thin films has been investigated. CuO thin films were deposited on glass substrates via a dip-coating method. The CuO thin films were further subjected to reductive annealing in hydrogen to form highly conductive Cu thin films with sheet resistances as low as 10 Ω/□. ZnO/Cu/ZnO multilayers were successfully prepared in a similar way by reducing ZnO/CuO/ZnO. The sheet resistance of the ZnO/Cu/ZnO multilayer thin films is about 10 kΩ/□, which is much higher than that of the pure Cu thin films. The formation of large discrete Cu crystallites in the multilayers explains the poor electrical conductivity of the sol-gel-derived ZnO/Cu/ZnO multilayers.  相似文献   

16.
Nanocomposite buffer layer based on metal oxide and polymer is merging as a novel buffer layer for organic solar cells, which combines the high charge carrier mobility of metal oxide and good film formation properties of polymer. In this work, a nanocomposite of zinc oxide and a commercialized available polyethylenimine (PEI) was developed and used as the cathode buffer layer (CBL) for the inverted organic solar cells and p-i-n heterojunction perovskite solar cells. The cooperation of PEI in nano ZnO offers a good film forming ability of the composite material, which is an advantage in device fabrication. In addition, power conversion efficiency (PCE) of the ZnO:PEI CBL based device was also improved when compared to that of ZnO-only and PEI-only devices. The highest PCE of P3HT:PC61BM and PTB7-Th:PC61BM devices reached to 3.57% and 8.16%, respectively. More importantly, there is no obvious device performance loss with the increase of the layer thickness of ZnO:PEI CBL to 60 nm in organic solar cells, which is in contrast to the PEI based devices, whose device performance decreases dramatically when the PEI layer thickness is higher than 6 nm. Such a nano composite material is also applicable in inverted heterojunction perovskite solar cells. A PCE of 11.76% was achieved for the perovskite solar cell with a thick ZnO:PEI CBL (150 nm) CBL, which is around 1.71% higher than that of the reference cell without CBL, or with ZnO CBL. In addition, stability of the organic and perovskite solar cells having ZnO:PEI CBL was also found to be improved in comparison with that of PEI based device.  相似文献   

17.
A series of indole-substituted fulleropyrrolidine derivatives with different side groups on a pyrrolidine rings, including methyl (OIMC60P), benzyl (OIBC60P), 2,5-difluoroinebenzyl (OIB2FC60P), and 2,3,4,5,6-pentafluoroinebenzyl (OIB5FC60P), have been synthesized and used as electron acceptor in the active layer of polymer-fullerene solar cells to investigate the effect of various substitute groups on the electronic structures, morphologies, and device performances. Optical absorption, electrochemical properties and solubility of the fullerene derivatives have been explored and compared. The inverted photovoltaic devices with the configuration ITO/ZnO/Poly(3-hexylthiophene)(P3HT):[60]fullerene derivatives/MoO3/Ag have been prepared including the reference cell based on the P3HT: methyl [6,6]-phenyl-C61-butylate (PCBM) blend films. All the devices properties were measured in air without encapsulation. We also investigated the effect of the thermal annealing on the crystallinity and morphology of the active layer and the device performance. The device based on the blend film of P3HT and OIBC60P showed a power conversion efficiency of 2.46% under illumination by AM1.5G (100 mW/cm2) after the annealing treatment at 120 °C for 10 min in air.  相似文献   

18.
The sputtered ZnO:Mn thin films were implanted with nitrogen ions (N+) and subsequently annealed at different temperatures up to 800 °C in N2 atmosphere. The structural and magnetic properties of the samples were systematically investigated. Both x-ray diffraction and Raman analyses reveal that all the films are of the wurtzite structure of ZnO with no distinct evidence of secondary phases. X-ray photoelectron spectroscopy studies indicate that both Mn2+ and N3− ions were incorporated into ZnO lattice successfully. While the films without nitrogen ions show paramagnetic behavior, ferromagnetism with clear hysteresis at 300 K is observed in Mn–N codoped ZnO films. Most importantly, we also found that the magnetic behavior of the codoped ZnO is very sensitive to the annealing temperature due to its effect on the activation of nitrogen ions. The strongest ferromagnetism is obtained in the films with the highest amount of nitrogen ions acceptors. Our results support the predication that the ferromagnetic ZnO:Mn2+ should be more stable of a hole-rich environment by theory.  相似文献   

19.
In this report, sputtered-grown undoped ZnO and Y-doped ZnO (ZnO:Y) thin film transistors (TFTs) are presented. Both undoped ZnO and ZnO:Y thin films exhibited highly preferred c-axis oriented (002) diffraction peaks. The ZnO:Y thin film crystallinity was improved with an increase of (002) peak intensity and grain size. The electrical properties of ZnO:Y TFTs were significantly enhanced relative to undoped ZnO TFTs. ZnO:Y TFTs exhibited excellent performance with high mobility of 38.79 cm2 V−1 s−1, small subthreshold swing of 0.15 V/decade, and high Ion/Ioff current ratio of the order of 8.17 × 107. The O1s X-ray photoelectron spectra (XPS) showed oxygen vacancy-related defects present in the ZnO:Y TFTs, which contributed to enhancing the mobility of the TFTs.  相似文献   

20.
Polycrystalline Cadmium Telluride (CdTe) thin films were prepared on glass substrates by thermal evaporation at the chamber ambient temperature and then annealed for an hour in vacuum ~1×10−5 mbar at 400 °C. These annealed thin films were doped with copper (Cu) via ion exchange by immersing these films in Cu (NO3)2 solution (1 g/1000 ml) for 20 min. Further these films were again annealed at different temperatures for better diffusion of dopant species. The physical properties of an as doped sample and samples annealed at different temperatures after doping were determined by using energy dispersive x-ray analysis (EDX), x-ray diffraction (XRD), Raman spectroscopy, transmission spectra analysis, photoconductivity response and hot probe for conductivity type. The optical band gap of these thermally evaporated Cu doped CdTe thin films was determined from the transmission spectra and was found to be in the range 1.42–1.75 eV. The direct energy band gap was found annealing temperatures dependent. The absorption coefficient was >104 cm−1 for incident photons having energy greater than the band gap energy. Optical density was observed also dependent on postdoping annealing temperature. All samples were found having p-type conductivity. These films are strong potential candidates for photovoltaic applications like solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号