首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The oxo–vanadium(IV) complex VO(oda)(H2O)2 (1) (oda=oxydiacetate, O(CH2COO)2) was obtained by reaction of aerobic aqueous solutions of VO(acac)2 with oxydiacetic acid, O(CH2COOH)2. The antiapoptotic biological activity of 1 was studied in insulin-producing cells. Chemically generated nitric oxide (NO) triggers apoptotic events, such as the appearance of oligonucleosomes in cytosol, and this response was prevented by the presence of 1 in the culture medium. The molecular structure of 1 has been determined by X-ray diffraction analysis.  相似文献   

3.
《Ceramics International》2015,41(6):7645-7650
Nano-sized ZnTiTa2O8 powders with ixiolite structure, with particle sizes ranging from 10 nm to 30 nm, were synthesized by thermal decomposition at 950 °C. The precursors were obtained by aqueous sol–gel and the compacted and sintered ceramics with nearly full density were obtained through subsequent heat treatment. The microstructure and electrical performance were characterized by field emission scanning electron microscopy, x-ray diffraction, and microwave dielectric measurements. All the samples prepared in the range 950–1150 °C exhibit single ixiolite phase and relative density between ~87% and ~94%. The variation of permittivity and Q·ƒ value agreed with that of the relative density. Pure ZnTiTa2O8 ceramic sintered at 1050 °C for 4 h exhibited good microwave dielectric properties with a permittivity of 35.7, Q·ƒ value of 57,550 GHz, and the temperature coefficient of resonant frequency of about −24.7 ppm/°C. The relatively low sintering temperature and excellent dielectric properties in the microwave range would make these ceramics promising for applications in electronics.  相似文献   

4.
N–heterocyclic carbene (NHC) complexes of palladium(II) are generally active as catalysts toward various coupling reactions, while their pharmacological efficiencies are seldom explored. A new series of palladium(II) complexes of both, functionalized and non–functionalized NHCs that were active against the human colon cancer (HCT116) cells are reported. Complexes were prepared by the technique of transmetallation using palladium source and in situ prepared silver(I)–NHC complexes in acetonitrile, and all complexes are characterized using spectroscopic and analytical tools. Additionally, the structure of palladium complex 9 was elucidated using single crystal X–ray diffraction method. In vitro anticancer studies revealed that the palladium complexes, 9 and 10, having xylyl–spacers significantly inhibited the HCT116 cell growth, exhibiting IC50 values in low micromolar range in MTT assay.  相似文献   

5.
A crystal structure of a compartmental ligand N,N′-bis(2,3-dihydroxybenzylidene)-1,3-diaminopropane (H4L = C17H18N2O4) (1) containing N2O2-inner and O4-outer coordination sites and a characterization of its novel diphenoxo-bridged discrete dinuclear complex [CuDy(H2L)(MeOH)(NO3)3]·2MeOH (2) are reported. The Schiff base ligand 1 crystallizes in the orthorhombic P212121 space group with a molecule in a bent conformation. The compound at 100 and 293 K displays the keto-enol tautomerism with the equilibrium in both temperatures shifted with a different degree towards the zwitterionic keto-amino form. The quantum chemical calculations showed preferences for enol-imino form in a gas phase and for keto-amine in solutions. The keto-amino tautomer is stabilized by intermolecular interactions. The complex 2 crystallizes in the triclinic P-1 space group as a dinuclear compound with CuIIDyIII core. The Dy(III) ion is nine-coordinated whereas the coordination number of Cu(II) is five. The temperature dependence of the magnetic susceptibility and the field-dependent magnetization indicated that the interaction between Cu(II) and Dy(III) metal centers in 2 is ferromagnetic.  相似文献   

6.
Fluorine-containing poly-styrene-acrylate (PSA) latex with core–shell structure was successfully synthesized by seeded semicontinuous emulsion polymerization using fluorine monomer Actyflon-G04 and reactive emulsifier DNS-86. The chemical composition, morphology of latex, and surface composition of the latex film were characterized by Fourier transform infrared spectra, transmission electron microscopy, and X-ray photoelectron spectroscopy, respectively. The stability properties of latex were tested by Ca2+, centrifugal and mechanical stability tests, and the latex film was studied by water contact angle, water absorption ratio, and thermo-gravimetric analysis. The results show that fluorine-containing PSA latex particles with crosslinked core and crosslinked shell structure have excellent stability properties, and the film of latex has excellent water repellency, thermal stability, and chemical resistance properties when the amount of fluorine monomer was only 8.0 wt%.  相似文献   

7.
Isocyanurate–oxazolidone polymers were synthesized by using various reactant stoichiometry of a diglycidyl ether of bisphenol-A (DGEBA) and a polymeric diphenyl methane diisocyanate (pMDI). The reaction was catalyzed by tris-2,4,6-dimethylaminoethylphenol (Ancamine K54). The effects of stoichiometry that the reaction had on the molecular structure and mechanical and thermomechanical properties were evaluated. Two main structures obtained from the reaction of DGEBA with pMDI, namely isocyanurate and oxazolidone, were clearly shown by Fourier transformed infrared spectroscopy (FTIR) analyses. It was found that the amount of DGEBA present determines the amount of oxazolidone formed. Where excess DGEBA was used, structural transformation reaction from isocyanurate to oxazolidone was observed. The amount of pMDI, on the other hand, influenced the amount of isocyanurate structure formed. As the relative amounts of isocyanurate and oxazolidone contents changed with stoichiometry of the reactants, the effects on the crosslink density in the samples were clearly shown by both mechanical and thermomechanical measurements. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 879–888, 2001  相似文献   

8.
By the reaction of the tetradentate Schiff base ligand H2salbn, N,N-disalicylidene-1,4-diaminobutane with FeIIICl3·6H2O in the presence of Et3N in MeOH a dinuclear iron(III) complex, [FeIII(salbn)(μ-OMe)]2 (1), has been obtained, whereas in EtOH, dinuclear complexes, [FeIII(μ-salbn)]2(μ-O) (2) and [FeIII(salbn)]2(μ-salbn) (3), are obtained. The structure of the complex 1 consists of two Fe(III) centers with one tetradentate salbn ligand (N2O2) which are bridged by two methoxo groups to yield a planar Fe2O2 core. On the other hand, in the complex 2, each of the two Fe(III) ions has a five-coordinate structure in which both salbn ligands act as a bridging didentate ligand and one oxygen atom bridges two Fe(III) ions to form a μ-oxo structure. The structure of the complex 3, which was obtained by accompanying with complex 2, consists of two six-coordinate Fe(III) centers in which each Fe(III) ion is coordinated by a tetradentate salbn ligand (N2O2) and one bridging salbn ligand (NO).  相似文献   

9.
Two new three-dimensional metal–organic frameworks, [H2N(CH3)2]2[Zn(btec)]·DMF (1, H4btec = 1,2,4,5-benzenetetracarboxylate acid) and [H2N(CH3)2][ZnLi(btec)]·DMF (2), have been solvothermally synthesized and structurally characterized by single crystal X-ray diffraction. Compound 1 based on μ4-btec features an anionic homometallic framework with 4-connected pts topology. Compound 2 is a heterometallic organic framework with rare (4, 4, 8)-connected network topology, which can be considered as constitute of a Li-btec (pts) net and a Zn-btec net. Moreover, the luminescent properties of two compounds are investigated in the solid state at room temperature.  相似文献   

10.
11.
A new double-layer metal–organic framework [Co3(tcpt)2(H2O)2] (1) has been synthesized using trigonal planar ligand 2,4,6-tris(4-carboxyphenoxy)-1,3,5-triazine (H3tcpt) as a bridging ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR, PXRD and TGA. Structure analysis reveals that compound 1 has a double-layer structure. Gas sorption measurements indicate that compound 1 exhibits selective adsorption capabilities for CO2 over CH4 and N2. Furthermore, the magnetic studies of compound 1 show antiferromagnetic interactions between Co(II) ions.  相似文献   

12.
Acetylene- and diacetylene-containing organosilicon polymers continue to be of great interest in academia, government, and industry due to their high thermo-oxidative stability combined with excellent solubility and processability characteristics. Progress in this field over the past 30 years is reported herein. We present and discuss the synthesis, characterization, and structure–property relationships related to these materials. Furthermore, properties for specific applications of these polymers are briefly summarized, such as absorption and emission spectroscopy, composite mechanical analysis, four-probe conductivity measurements, and electroluminescence.  相似文献   

13.
Nanocomposites based on cadmium sulfide (CdS) and Na-montmorillonite (Na+-Mt) were prepared by a hydrothermal method using Cd[NH2CSNH2]SO4 complex as precursor of CdS which was derived from cadmium sulfate and thiourea. These nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR) and X-fluorescence (XF). The nanocomposites consist of nanosized CdS pillars, which tend to increase in size as the amount of complex precursor increases. The CdS crystals have a hexagonal symmetry. The photocatalytic activity of the obtained CdS–Mt nanocomposites is improved significantly compared to that of the Mt and pure CdS. The resulting CdS–Mt nanocomposites could degrade methylene blue and rhodamine 6G under near UV–visible irradiation.  相似文献   

14.
The TaB2–27.9 vol% SiC composite was synthesized by self-propagating high-temperature synthesis starting from mechanically activated Ta, B4C and Si reactants. The obtained powders were spark plasma sintered at 1800 °C and 20 MPa for 30 min total time, thus obtaining a 96% dense product. The latter one was characterized in terms of microstructure, hardness, fracture toughness, and oxidation resistance. The obtained results, particularly the fracture toughness, are promising when compared to those related to analogous materials reported in the literature and fabricated with similar and different processing routes.  相似文献   

15.
Stoichiometric compositions of ferrites with the chemical formula Li0.5?0.5xCoxFe2.4?0.5xDy0.1O4 with x=0, 0.25, 0.5, 0.75, 1.0 were prepared by the standard double sintering ceramic method. X-ray diffraction analysis confirmed the cubic spinel structure of the prepared samples. The structural, morphological and magnetic properties were studied by X-ray diffraction, infra-red spectroscopy (IR), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM) and ac susceptibility measurements. Lattice constant, grain size and density increase whereas porosity decreases with the increase in Co2+ substitution. IR measurements show the characteristic ferrite bands. Spectral absorption bands were observed in IR spectroscopic analysis at ν1=564?601 cm?1, ν2=486?519 cm?1 and ν3=551?578 cm?1. The cation distribution estimated by the X-ray diffraction is supported by magnetization and susceptibility studies. The saturation magnetization decreases from 44.25 to 17.14 emu/g whereas coercivity remarkably increases from 240.69 to 812.14 emu/g with increasing Co2+ substitution. The mechanisms involved are discussed.  相似文献   

16.
In this study novel material PbS–graphene/TiO2 composites were prepared by sol–gel method. The “as-prepared” composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with an energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (DRS) and Raman spectroscopic analysis. The photocatalytic activities were investigated by the degradation of methylene blue (MB) as a standard dye. We observed that coupling of PbS with TiO2 extends the photoresponse to visible region. This revealed that the excellent photoinduced charge separation abilities and transport properties of graphene make these hybrids as potential candidates for developing high-performance next-generation devices.  相似文献   

17.
A well-defined, stimuli-responsive tetrapolymer with pH-responsive characteristics and targeting specificity has been synthesized by radical copolymerization of methacrylic acid, N-(2-hydroxypropyl)methacrylamide, methacryloyl glycylglycyl sulfamethoxazole, and N-(methacryloyl)glycylglycine 4-nitrophenyl ester. The structure and properties of tetrapolymer were investigated by NMR, FT-IR, UV–visible absorption, TEM and gel permeation chromatography. Incorporation of maleimide linker into tetrapolymer facilitates its conjugation with antibody fragments, as demonstrated by the solid-phase immunoassay experiments. The TEM image shows that tetrapolymer had self-assembled a spherical micelle with a diameter ranging from 50 to 150 nm. Altering the pH of the solution leads to a different extent of aggregation at pH 6.5–3.5, responding in accordance with the properties associated with the extracellular environment of solid tumors and endocytosis. Furthermore, fluorescence spectroscopy indicated a critical micelle concentration (CMC) of 1 mg/mL. Because of the solvation and ionization effects, the tetrapolymer showed considerably enhanced antibacterial activities against Escherichia coli in the presence of DMSO and the antibacterial activity increased with decreasing pH value.  相似文献   

18.
In this study, polypyrrole (PPy) and its bimetallic oxide composites (PPy–V2O5–MnO2) were synthesized via a modified chemical oxidation polymerization method in the aqueous medium with FeCl3·6H2O as an oxidant. The synthesized materials were characterized with various analytical techniques to investigate their structural, crystallographic, thermal, morphological, optical, and electrical properties. The Fourier transform infrared study confirmed the successful synthesis of the materials, whereas the X-ray diffraction analyses showed the amorphous and crystalline natures of the PPy and PPy–V2O5–MnO2 composites, respectively. The bimetallic oxide content improved the thermal stability of the composites, as ratified by thermal analysis. The synthesized PPy had a globular and spongy nature, whereas the composites were mixtures of short and long rod-shaped particles. The bimetallic oxide blend enhanced the doping, surface area and semiconducting nature of composites, and lower electrical resistance compared with those of the PPy. The resistance of the synthesized materials depended on the V2O5–MnO2 blend content in the composites and the temperature. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 47680.  相似文献   

19.
The development of microporous ceramic thin layers is of prime interest for sensors or gas separation membranes working at high temperature. Microporous silica membranes can be easily prepared by the sol–gel process. However the microporosity of pure silica is rapidly modified by steam at high temperature. One way to improve hydrothermal stability is to use mixed-oxide membranes. In this work, microporous silica–alumina membranes were prepared by a simple and robust sol–gel method. Tetraethoxysilane was mixed with an acidic alumina hydrosol. Urea was added for preparing the alumina hydrosol, for controlling the mixed-oxide network polycondensation and also as porogen agent. FTIR and 27Al NMR spectroscopic analyses showed that for Si/Al molar ratios up to 6/1, homogeneous mixed oxides were obtained with a random distribution of Al and Si atoms in the oxide lattice based on tetrahedral units. The derived supported layers were crack-free as demonstrated by scanning electron microscopy (SEM) observations. Their microporosity was investigated using ellipsoporosimetry (EP) with films supported on flat dense substrates. He, N2 and CO2 permeance measurements were performed for membranes deposited on porous tubular substrates. The measured values of He/N2 and He/CO2 ideal selectivities are in agreement with the microporous nature of the prepared layers.  相似文献   

20.
The influence of zinc oxide content on the formation of chlorapatite-based composite nanopowders in the mechanically alloyed CaO–CaCl2–P2O5–ZnO system was studied. To mechanosynthesize composite nanopowders, different amounts of hydrothermally synthesized zinc oxide nanoparticles (0–10 wt%) were mixed with ingredients and then were mechanically activated for 5 h. Results showed that in the absence of zinc oxide, high crystalline chlorapatite nanopowder was obtained after 5 h of milling. In the presence of 4 and 7 wt% zinc oxide, the main product of milling for 5 h was chlorapatite–zinc oxide composite nanopowder. On increasing the zinc oxide content to 10 wt%, composite nanopowder was not formed due to improper stoichiometric ratio of the reactants. The crystallite size, lattice strain, volume fraction of grain boundary, and crystallinity degree of the samples fluctuated significantly during the milling process. In the presence of 7 wt% zinc oxide, the crystallite size and crystallinity degree reached 51±2 nm and 79±2%, respectively. During annealing at 900 °C for 1 h, the crystallization of composite nanopowder occurred and as a result the crystallinity degree rose sharply to 96±3%. In addition, the crystallite size increased to 77±2 nm after annealing at 900 °C. According to SEM and TEM images, the composite nanopowder was composed of both ellipse-like and polygonal particles with a mean size of about 98 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号