首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
基于纳米压印PET基底的高效柔性有机电致发光器件   总被引:1,自引:1,他引:0       下载免费PDF全文
朱红  田宇  唐建新 《液晶与显示》2016,31(8):733-739
为了克服现有的以玻璃为基底、ITO为电极的有机电致发光器件(OLED)的韧性差、对裂纹缺陷敏感等固有缺点,对现有的OLED器件结构进行优化。本文提出了以PET为基底,旋涂高导PEDOT:PSS作为阳极的高效柔性OLED器件结构。并在此基础上,通过纳米压印蛾眼模板将光耦合结构引入器件,提高器件的光取出效率。此绿光FOLED器件在亮度为1 000 cd·m-2时,功率效率为36.10 lm·W-1。在此基础上,通过纳米压印引入光耦合结构的柔性OLED器件表现出良好的光电性质,在亮度为1 000 cd·m-2时,功率效率可达到80.46 lm·W-1。并且这种绿光柔性OLED器件在以器件半边长为曲率半径180°弯折200次后亮度衰减很少。此种高导PEDOT:PSS电极和柔性PET基底可以成为较好的ITO透明电极和刚性玻璃基底的替代物,为生产可穿戴式设备提供了可能。  相似文献   

2.
In this study, we developed foldable transparent electrodes composed of Ag nanowire (AgNW) networks welded by Ag nanoparticles (AgNPs) reduced from commercial Ag ink. All the processes used were solution-based. Using the Meyer rod method, uniform AgNW networks were roll-to-roll coated on large-area polymer substrates, and the spin-coated AgNPs firmly welded the AgNWs together at junctions and to substrates. The hybrid films consisting of AgNWs and the Ag film matrix exhibited higher electrical conductivity (5.0–7.3 × 105 S/m) than and equivalent transparency (90–95%) to the AgNW networks. Furthermore, the hybrid films showed significantly better bending stability than AgNW networks. During cyclic bending tests to 10,000 cycles at 5 mm bending radius and even when almost folded with rb of 1 mm, the resistivity changes were negligible because AgNWs were tightly held and adhered to the substrate by Ag films covering wires, thereby hindering fracturing of AgNWs under tension. Because the films were fabricated at a low temperature, there was no oxidation on the surfaces of the films. Hence, flexible organic light-emitting diodes (f-OLEDs) were successfully fabricated on polyethylene terephthalates (PET) coated with the hybrid films. The f-OLED in the bent state was comparable to that in the flat state, validating the potential applications of these transparent hybrid films as electrodes in various flexible electronics.  相似文献   

3.
The pursuit for efficient deep blue material is an ever-increasing issue in organic optoelectronics field. It is a long-standing challenge to achieve high external quantum efficiency (EQE) exceed 10% at brightness of 1000 cd m−2 with a Commission International de L'Eclairage (CIEy) <0.08 in non-doped organic light-emitting diodes (OLEDs). Herein, this study reports a deep blue luminogen, PPITPh, by bonding phenanthro[9,10-d]imidazole moiety with m-terphenyl group via benzene bridge. The non-doped OLED based on PPITPh exhibits an exceptionally high EQE of 11.83% with a CIE coordinate of (0.15, 0.07). The EQE still maintains 10.17% at the brightness of 1000 cd m−2, and even at a brightness as high as 10000 cd m−2, an EQE of 7.5% is still remained, representing the record-high result among non-doped deep-blue OLEDs at 1000 cd m−2. The unprecedented device performance is attributed to the reversed intersystem crossing process through hot exciton mechanism. Besides, the maximum EQE of orange phosphorescent OLED with PPITPh as host is 32.02%, and remains 31.17% at the brightness of 1000 cd m−2. Such minimal efficiency roll-off demonstrates that PPITPh is also an excellent phosphorescent host material. The result offers a new design strategy for the enrichment of high-efficiency deep blue luminogen.  相似文献   

4.
A corrugated indium zinc oxide thin film was fabricated on a glass substrate at room temperature for use in a blue phosphorescent organic light-emitting device (OLED) to facilitate device efficiency in term of the external quantum efficiency (EQE) of the device, which increased from 28.77% to 34.33% after the fabrication of the aforementioned layer. Furthermore, a remarkably high EQE of 52.51% was achieved through external light extraction by attaching a hemispheric macrolens on the substrate of the device. Consequently, the efficiency of the developed blue phosphorescent OLED became 1.83 times higher than that of a planar counterpart. Moreover, this finding was verified through theoretical analyses, that indicated the underlying light extraction physics was attributed to the efficient extraction of trapped light from the surface plasmon polariton, waveguide, and substrate modes.(submitted to Organic Electronics).  相似文献   

5.
We report a flexible organic light-emitting diode (OLED) based on transparent polyimide (PI) substrate with 3-D photonic structure, which shows a maximum gain factor of ∼1.7 for current efficiency at large viewing angle. The PI substrate is a replicate from glass carrier with hexagonal closely-packed convex-truncated-cone array. Green OLEDs are fabricated on the planar surface of the PI substrate before being mechanically de-bonded from the glass template. The proposed OLEDs exhibit excellent angular optical properties including stable CIE coordinates with Δx = −0.006 and Δy = 0.002 as the viewing angle varies from 0° to 50°. Surface scattering effect of the 3-D photonic structure eliminates the periodic distortion phenomenon in electroluminescence spectrum of flexible OLEDs.  相似文献   

6.
We report our study on white organic light-emitting diodes (WOLEDs) implemented in a down-conversion scheme based on an ITO-free, cavity-enhanced blue phosphorescent OLED and a micro-structured color conversion layer (CCL) containing red and green phosphors. Cavity resonance induced by a ZnS/Ag/MoO3 anode structure enables both efficiency enhancement/spectral refinement of blue phosphorescent OLED. In accordance with the resonance-induced effect, outcoupling assistance provided by micro-structuring of CCLs works to yield WOLEDs with both high efficiency and illumination-quality color rendering. Highly flexible WOLEDs are also demonstrated in the proposed scheme and tested at a radius of curvature of 10.8 mm to illustrate its advantages in realizing versatile next-generation light sources.  相似文献   

7.
We report a high performance orange organic light-emitting diode (OLED) where red and green phosphorescent dyes are doped in an exciplex forming co-host as separate red and green emitting layers (EMLs). The OLED shows a maximum external quantum efficiency (EQE) of 22.8%, a low roll-off of efficiency with an EQE of 19.6% at 10,000 cd/m2, and good orange color with a CIE coordinate of (0.442, 0.529) and no color change from 1000 to 10,000 cd/m2. The exciplex forming co-host system distributes the recombination zone all over the EMLs and reduces the triplet exciton quenching processes.  相似文献   

8.
A highly conductive, smooth and transparent electrode is developed by coating poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) over silver nanowires (AgNWs) followed by a hot-pressing method. The hot-pressed AgNW/PEDOT:PSS film shows a low sheet resistance of 12 Ω/square, a transmittance of 83% at 550 nm and a smooth surface. The improvement of the conductivity and smoothness are ascribed to the fusion of nanowires resulted from the mechanical hot-pressing. The AgNW/PEDOT:PSS film on polyethylene naphthalate (PEN) substrate exhibits higher conductive stability against the bending test than commonly used indium tin oxide (ITO). Using the hot-pressed AgNW/PEDOT:PSS film as the anode, we have fabricated ITO-free organic light emitting diode with a maximum current efficiency of 58.2 cd/A, which is higher than the device with ITO anode. This proves that such AgNW/PEDOT:PSS film treated by hot-pressing is a promising candidate for flexible optoelectronic devices.  相似文献   

9.
Substrates with high transmittance and high haze are desired for increasing the light outcoupling efficiency of organic light‐emitting diodes (OLEDs). However, most of the polymer films used as substrate have high transmittance and low haze. Herein, a facile route to fabricate a built‐in haze glass‐fabric reinforced siloxane hybrid (GFRH) film having high total transmittance (≈89%) and high haze (≈89%) is reported using the scattering effect induced by refractive index contrast between the glass fabric and the siloxane hybrid (hybrimer). The hybrimer exhibiting large refractive index contrast with the glass fabric is synthesized by removing the phenyl substituents. Besides its optical properties, the hazy GFRH films exhibit smooth surface (Rsq = 0.2 nm), low thermal expansion (13 ppm °C−1), high chemical stability, and dimensional stability. Owing to the outstanding properties of the GFRH film, OLED is successfully fabricated onto the film exhibiting 74% external quantum efficiency enhancement. The hazy GFRH's unique optical properties, excellent thermal stability, outstanding dimensional stability, and the ability to perform as a transparent electrode enable them as a wide ranging substrate for the flexible optoelectronic devices.  相似文献   

10.
A new hybrid local and charge transfer (HLCT) molecule 2TPA-PPI is obtained for constructing the high-performance organic light-emitting diodes (OLEDs) in this work. 2TPA-PPI possesses the sufficient emission/charge-transporting properties, thus it is used as a neat emitter achieving an efficient deep-blue OLED with very high external quantum efficiency (EQE) up to 10.7%, as well as a multi-functional emitting host matrix constructing the high-performance phosphorescent OLEDs. More importantly, a high-efficiency candle light-style OLED adopting the HLCT/phosphor hybrid strategy is realized, where 2TPA-PPI acts as not only a blue emitter, but also a universal host sensitizing both yellow and red phosphors. This quasi-white OLED represents almost the highest EQE/PE level of 25.2%/49.7 lm W−1 at the practical luminance level of 1000 cd m−2 for the white OLEDs with the excellent color rendering index values of more than 80 reported.  相似文献   

11.
Silver nanowire (AgNW) networks are a promising candidate to replace indium tin oxide (ITO) as transparent conductors. In this paper, a novel transparent composite conductor composed of AgNW/biocompatible alginate gel on a flexible polyethylene terephthalate (PET) substrate, with synchronously enhanced adhesion and reduced resistivity, is prepared without high‐temperature annealing. The sheet resistance of the flexible AgNW/PET film reduces from 300 to 50.3 Ohm sq?1 at transmittance of 94%. The optical and electrical performance is superior to that obtained from the flexible ITO film on PET. Meanwhile, the sheet resistance does not show great change after tape test, suggesting a good adhesion of AgNW to the polymer substrate. Moreover, the AgNW composite film shows a good stability to resist long‐term storage, solvent damage, and ultrasonication. Finally, polymer solar cells employing the composite AgNW film as the electrode are realized, displaying an efficiency of 2.44%.  相似文献   

12.
The next generation of optoelectronic devices requires transparent conductive electrodes to be flexible, inexpensive and compatible with large scale manufacturing processes. We report an ultrasmooth, highly conductive and transparent composite electrode on a flexible photopolymer substrate by employing a template stripping method. A random silver nanowire (AgNW) network buried in poly(3,4ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film constituted the composite electrode. Besides the effectively decreased surface roughness, its sheet resistance and transmittance are comparable to those of conventional PEDOT:PSS electrode. As a result, the efficiency of the OLEDs based on the composite electrode exhibited 25% enhancement compared to the OLEDs with conventional PEDOT:PSS electrode. Moreover, the performance of the flexible OLEDs remains stable after over one hundred bending cycles.  相似文献   

13.
The efficiency of organic light-emitting diodes (OLEDs) is especially limited by their low light outcoupling efficiency. An approach for its enhancement is the use of horizontally oriented emitter molecules with respect to the substrate. In this study we quantitatively determine the orientation of the optical transition dipole moments in doped films of two similar phosphorescent Pt(II) complexes having a linear molecular structure. These emitters are employed in OLED devices and their efficiency is analyzed by optical simulations. For an OLED with slightly more horizontally oriented emitter molecules an external quantum efficiency (ηEQE) of 15.8% at low current-density is realized, indicating a relative improvement of outcoupling efficiency of 5.3% compared to the isotropic case. However, a very similar complex adopting isotropic molecular orientation yields ηEQE of only 11.5% implying an imperfect charge carrier balance in the OLED device and a shift of the recombination zone. Furthermore, we highlight the enormous potential of horizontal molecular orientation of emitting molecules in OLEDs.  相似文献   

14.
Embedded-type surface electrodes with silver nanowire (AgNW) and carbon nanotube (CNT) as conductive fillers and organosoluble polyimide (PI) as a matrix were investigated for their electrical conductivity and electrical durability under cyclic bending. The chosen polyimide was constituted with 4,4′-oxydiphthalic dianhydride and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane through a one-step process. Two types of surface electrodes of CNT/PI and AgNW/PI were prepared at 90 °C. The flexible CNT/PI and AgNW/PI surface electrodes not only had high electrical conductivities of 6.3 and 100 S/cm, respectively, after 30 spraying cycles but also kept electrical durability after 1200-time bending tests. The ITO-coated ITO/PI and ITO/AgNW/PI electrodes, for a comparative purpose, had severe electrical failure under cyclic bending.  相似文献   

15.
We report on a systematic study of the electromechanical properties of flexible copper (Cu) thin film for flexible electronics. Cu ink is synthesized with chemical reduction process. Cu ink film spin-coated on a polyimide substrate is annealed with white flash light, also known as intense pulsed light (IPL), which guarantees a room temperature and sub-second process in ambient conditions. IPL annealed Cu film shows the electrical resistivity of 4.8 μΩ cm and thickness of 200 nm. The electromechanical properties of IPL annealed Cu film are investigated via outer/inner bending, stretching, and adhesion tests, and it is compared with conventional electron-beam evaporated Cu film. IPL annealed Cu film shows a constant electrical resistance within a bending radius of 6 mm. The bending fatigue test shows that the Cu film can withstand 10,000 bending cycles. In the stretching test, the Cu film shows a 50% increase in resistance when a strain of 2.4% was induced. At 4% strain, the resistance increases more than 200%. Meanwhile, the electron-beam evaporated film shows a constant resistance up to a strain of 4%. Lower stretchability of IPL annealed Cu film is attributed to its inherent cracks and porous film morphologies. IPL annealing induces the local melting at the interface between the substrate and Cu film, which increases the adhesion strength of the Cu film. These results provide useful information regarding the mechanical flexibility and durability of the nanoparticle films for the development of flexible electronics.  相似文献   

16.
In this paper an easy method to prepare flexible conductive substrates has been demonstrated. The substrates are mainly PET (PolyEthyleneTerephthalate), on which AgNW (silver nanowire) were deposited by spin casting method. For adhesion purpose a common cosmetic material has been utilized. The material provides versatile features to these coated substrates, including robustness, hydrophobicity with transparent bracing of nanowires (NW) with the flexible substrate. Four probe conductivity measurement shows the resistivity is 12 Ω/cm and is comparable to that of commercially available indium tin oxide (ITO) coated substrates. This method is cheap, easy and can be used for different objectives like flexible thin film photovoltaic, light emitting diodes, photosensors etc.  相似文献   

17.
Low-operating-voltage organic inverters using bilayer cross-linked poly(4-vinylphenol)/Al2O3 dielectrics were fabricated on polyimide substrates. The flexible inverters could be operated at a supply voltage of as low as 2 V and achieve a gain of over 50 at 2 V. The organic inverters exhibited good mechanical and electrical stabilities after 104 times of bending due to the superior microstructural stabilities of the organic semiconductors, as confirmed by in situ 2D grazing incidence X-ray diffraction (GIXRD). Analysis of GIXRD spectra showed that the variation in the width of the diffraction peak was less than 1.5% after different bending times. The proposed inverters maintained stable gains of above 50 after 104 times of bending and had a maximum transition voltage shift of 0.31 V during the bending process. These findings imply that our inverters could be commercially applied to low-voltage flexible electronics.  相似文献   

18.
Networks of silver nanowires (AgNW) have been shown to facilitate high transparency, high conductivity, and good mechanical stability. However,the loose characteristic and local insulation problems due to gaps between the nanowires limit their application as electrodes. This study investigates an inkjet-printed Ag grid combined with AgNW to form a transparent hybrid electrode. The printed Ag grid on AgNW film connects the gaps between the Ag nanowires to increase the overall electric conductivity. The printed Ag-grid/AgNW hybrid electrodes have low resistivity (22.5 Ω/□) while maintaining a high transmittance (87.5%). These values are similar to standard indium tin oxide (ITO) on glass which has resistivity of 20Ω/□ and transmittance of 89% at 550 nm. In addition, these hybrid electrodes are also very flexible when fabricated on a photopolymer substrate. A spin-coating process combined with a peel-off process enable the fabrication of flexible ultra-smooth Ag-grid/AgNW electrodes. We tested the transparent and flexible electrode as the anode of a flexible organic light emitting diode (F-OLED). The light emitting layer of the F-OLED is 35 nm thick tris-(8-hydroxyquinoline) aluminum doped with 0.5% 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyropyrano(6,7-8-I,j)quinolizin-11-one. The maximum brightness and current efficiency of the F-OLED are 10000 cd/m2 and 12 cd/A, respectively, even when bent around a radius of 2 mm. The good performance of the device with Ag-grid/AgNW hybrid electrodes show that enhanced conductive inkjet-printed Ag nanoparticles combined with Ag nanowires can produce high quality electrodes for flexible organic optoelectronic devices.  相似文献   

19.
Organic light-emitting diodes (OLEDs) have shown great success in the display applications recently. However, the applications of OLEDs in lighting are still limited due to their complex device structures. Here, we developed a novel phosphor doped glass substrate with both high scattering and excellent color conversion capability to greatly simplify the device structures of white organic light-emitting diodes (WOLEDs). A simple-structured WOLED comprising a blue OLED and the scattering fluorescent substrate was demonstrated to realize high quality white light for lighting applications. The WOLED exhibits a turn-on voltage of 2.7 V, a maximum power efficiency of 29.8 lm/W, an external quantum efficiency (EQE) of 14.2%, a color rendering index (CRI) of 86, and a correlated color-temperature (CCT) of 3900 K. The low turn-on voltage can be attributed to the single emissive layer structure used in the WOLED. The high power efficiency as well as the high EQE are due to both the high color conversion efficiency and the high scattering capability of the fluorescent substrate. In addition, the WOLED is favorable for high-quality solid-state lighting in our daily life due to its high color rendering ability along with an adequate CCT CC.  相似文献   

20.
《Organic Electronics》2007,8(4):293-299
OLEDs are gaining increasing interest for lighting applications as large-area light sources. Their lifetime and overall efficiency can be increased by the optimization of light outcoupling.In this article, scattering films on the viewer’s side of the substrate to increase the outcoupling efficiency of OLEDs for lighting applications are examined. Experimental results show that the increase of outcoupling efficiency is dependent from the absolute number of scattering particles in the matrix.Theoretical considerations expect an increase of outcoupling efficiency of up to 70%. Experimental results yield an increase of outcoupling efficiency of about 22%. A software model based on raytracing to simulate light outcoupling from OLEDs through a scattering layer is introduced to gain a deeper understanding of the light extraction mechanism. We found that the scattering anisotropy factor g determined using the Henyey–Greenstein phase function and the effective absorbance of the OLED device have strong impact on outcoupling efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号