首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonfullerene acceptors (NFAs) in blends with highly crystalline donor polymers have been shown to yield particularly high device voltage outputs, but typically more modest quantum yields for photocurrent generation as well as often lower fill factors (FF). In this study, we employ transient optical and optoelectronic analysis to elucidate the factors determining device photocurrent and FF in blends of the highly crystalline donor polymer PffBT4T‐2OD with the promising NFA FBR or the more widely studied fullerene acceptor PC71BM. Geminate recombination losses, as measured by ultrafast transient absorption spectroscopy, are observed to be significantly higher for PffBT4T‐2OD:FBR blends. This is assigned to the smaller LUMO‐LUMO offset of the PffBT4T‐2OD:FBR blends relative to PffBT4T‐2OD:PC71BM, resulting in the lower photocurrent generation efficiency obtained with FBR. Employing time delayed charge extraction measurements, these geminate recombination losses are observed to be field dependent, resulting in the lower FF observed with PffBT4T‐2OD:FBR devices. These data therefore provide a detailed understanding of the impact of acceptor design, and particularly acceptor energetics, on organic solar cell performance. Our study concludes with a discussion of the implications of these results for the design of NFAs in organic solar cells.  相似文献   

2.
Crystallizable, high‐mobility conjugated polymers have been employed as secondary donor materials in ternary polymer solar cells in order to improve device efficiency by broadening their spectral response range and enhancing charge dissociation and transport. Here, contrasting effects of two crystallizable polymers, namely, PffBT4T‐2OD and PDPP2TBT, in determining the efficiency improvements in PTB7‐Th:PC71BM host blends are demonstrated. A notable power conversion efficiency of 11% can be obtained by introducing 10% PffBT4T‐2OD (relative to PTB7‐Th), while the efficiency of PDPP2TBT‐incorporated ternary devices decreases dramatically despite an enhancement in hole mobility and light absorption. Blend morphology studies suggest that both PffBT4T‐2OD and PDPP2TBT are well dissolved within the host PTB7‐Th phase and facilitate an increased degree of phase separation between polymer and fullerene domains. While negligible charge transfer is determined in binary blends of each polymer mixture, effective energy transfer is identified from PffBT4T‐2OD to PTB7‐Th that contributes to an improvement in ternary blend device efficiency. In contrast, energy transfer from PTB7‐Th to PDPP2TBT worsens the efficiency of the ternary device due to inefficient charge dissociation between PDPP2TBT and PC71BM.  相似文献   

3.
This paper proposes high efficiency semitransparent organic solar cells (OSCs) with good color perception and good color rendering using blade coating technique. We investigate four different polymer blends and first fabricate small area devices with active area of 0.04 cm2, followed by large area devices with active area of 10.8 cm2. Two of the polymer blends, 2,6-Bis(trimethyltin)-4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene:6,6-phenyl C71-butyric acid methyl ester (PBDTTT-CT:PC71BM) and poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′] dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]:PC71BM (PBDTTT-EFT:PC71BM) show promising results. For small area devices, semitransparent PBDTTT-CT:PC71BM and semitransparent PBDTTT-EFT:PC71BM achieve a power conversion efficiency (PCE) of 5.2% (opaque PCE = 7.5%) and 5.6% (opaque PCE = 9.4%) respectively. For large area devices, they are found to produce a PCE of 3.8% (opaque PCE = 4.2%) and 5.3% (opaque PCE = 5.9%) respectively. Based on the CIE 1931 chromaticity diagram, semitransparent PBDTTT-CT:PC71BM and semitransparent PBDTTT-EFT:PC71BM are located very close to the standard illuminant D65, indicating good color perception. As for color rendering, they demonstrate high color rendering index (CRI) of 95.4 and 87.1 respectively. These combined high performances indicate high-quality transmitted light, which is suitable for window application.  相似文献   

4.
To investigate photocurrent generation mechanisms in these organic solar cells (OSCs), we design and synthesize four thienothiophene (TT)-based small-molecule donors with the highest occupied molecular orbital (HOMO) levels varying from −6.4 eV to −5.1 eV, which span across the HOMO value of the [6,6]-phenyl-C70-butyric acid methyl ester (PC71BM) acceptor. We measure TT-based donor:PC71BM films’ electronic and optical properties, OSC current density-voltage characteristic, and external quantum efficiency, and perform density functional theory (DFT) calculations. Our results show that photocurrent generation depends strongly on the substitutions of the center TT groups, cyano (-CN) versus hexyloxy (-OHex). With 1 wt% donor, TTOHex:PC71BM devices produce seven times, increasing to twelve times for 5 wt % donor, higher photocurrent than neat PC71BM devices. In contrast, TTCN:PC71BM devices do not generate additional photocurrent even with 10 wt% donor. The photocurrent generation in TT-based donor:PC71BM devices depends critically on the HOMO value of the donor molecule with respect to that of PC71BM, indicating the importance of type II energy level alignment to facilitate exciton dissociation at the donor-acceptor interface. The photovoltage of all TT:PC71BM devices are comparable to neat PC71BM devices, 0.85–0.90 V, with a low voltage loss due to non-radiative recombination. The fill factor of TTOHex:PC71BM devices are low due to the low hole mobility, ~10−8 cm2/V. Following exciton dissociation, hole transport is analyzed according to three possible mechanisms: tunneling, percolation pathways, and hole back transfer. We find that the hole back transfer mechanism can explain all experimental results and therefore is the primary hole transport mechanism for photocurrent generation in TT-based donor:PC71BM dilute-donor OSCs.  相似文献   

5.
Here we report that poly(N-dodecyl-2-ethynylpyridiniumbromide) (PDEPB) interlayers between electron-collecting zinc oxide (ZnO) layers and bulk heterojunction (BHJ) layers act as a universal interfacial layer for improving the performances of inverted-type polymer:fullerene solar cells. Three different BHJ layers, poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), poly[(4,8-bis(2-ethylhexyloxy)-benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(N-2-ethylhexylthieno[3,4-c]pyrrole-4,6-dione)-2,6-diyl]] (PBDTTPD):PC61BM, and poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]-thiophenediyl] (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), were employed so as to prove the role of the PDEPB interlayers. Results showed that the power conversion efficiency (PCE) of polymer:fullerene solar cells with the three different BHJ layers increased in the presence of the PDEPB interlayers prepared from 0.5 mg/ml solutions. The improved PCE was attributed to the conformal coating of the PDEPB layers on the ZnO layers (by atomic force microscopy measurement), lowered work functions of ZnO induced by the PDEPB layers (by Kelvin probe measurement), and reduced interface resistance (by impedance spectroscopy measurement), as supported by the noticeable change in the atom environments of both the ZnO and PDEPB layers (by X-ray photoelectron spectroscopy measurement).  相似文献   

6.
Nanocomposite buffer layer based on metal oxide and polymer is merging as a novel buffer layer for organic solar cells, which combines the high charge carrier mobility of metal oxide and good film formation properties of polymer. In this work, a nanocomposite of zinc oxide and a commercialized available polyethylenimine (PEI) was developed and used as the cathode buffer layer (CBL) for the inverted organic solar cells and p-i-n heterojunction perovskite solar cells. The cooperation of PEI in nano ZnO offers a good film forming ability of the composite material, which is an advantage in device fabrication. In addition, power conversion efficiency (PCE) of the ZnO:PEI CBL based device was also improved when compared to that of ZnO-only and PEI-only devices. The highest PCE of P3HT:PC61BM and PTB7-Th:PC61BM devices reached to 3.57% and 8.16%, respectively. More importantly, there is no obvious device performance loss with the increase of the layer thickness of ZnO:PEI CBL to 60 nm in organic solar cells, which is in contrast to the PEI based devices, whose device performance decreases dramatically when the PEI layer thickness is higher than 6 nm. Such a nano composite material is also applicable in inverted heterojunction perovskite solar cells. A PCE of 11.76% was achieved for the perovskite solar cell with a thick ZnO:PEI CBL (150 nm) CBL, which is around 1.71% higher than that of the reference cell without CBL, or with ZnO CBL. In addition, stability of the organic and perovskite solar cells having ZnO:PEI CBL was also found to be improved in comparison with that of PEI based device.  相似文献   

7.
8.
We synthesized a novel wide bandgap polymer, PDTFBT, forming a weak donor (WD)-weak acceptor (WA) structure for use in organic photodetectors (OPDs) and organic solar cells (OSCs). The fluorination in the D unit and the alkoxy substitution in the A unit induced WD and WA properties, respectively. The WD-WA structure of PDTFBT effectively broadened the bandgap compared to typical D-A structures, and the S-F and S-O dipole-dipole interactions induces a highly planar backbone structure with excellent π-π stacking in the vertical direction. In OPDs, conformationally less disordered PDTFBT polymer retained the constant responsivity and significantly improved the detectivity of PDTFBT:PC71BM devices even with a thick active layer of 470 nm, contrary to the variation in the responsivity of P3HT:PC61BM devices depending on the thickness. In OSCs, the deep HOMO energy level (−5.57 eV) of PDTFBT led to high Voc of 0.92 V in PDTFBT:PC71BM devices, which was 0.3 eV higher than that of P3HT:PC61BM devices (0.62 V), resulting in 1.8-fold enhanced power conversion efficiency. We demonstrated that the WD-WA structure with S-F and S-O interactions is highly promising strategy to make wide bandgap polymers for organic photodetectors and for the bottom cell of tandem architecture.  相似文献   

9.
We studied the electrical properties of organic photovoltaic (OPV) devices based on poly (3-hexylthiophene) and fullerene derivative [6, 6]-Phenyl-C70-butyric acid methyl ester nanocomposite (P3HT:PC70BM) as a function of the annealing temperature. Thermal annealing enables crystallization of the polymer and diffusion of the PC70BM molecules. Diode parameters, such as the barrier height ϕb and the ideality factor n were calculated. They were found to be depend strongly on the annealing temperature. This dependence is attributed to surface states, inhomogeneity in the material and series resistance. Best OPV devices had a short circuit current density of 3.35 mA/cm2, an open circuit voltage of 0.68 V, a fill factor of 0.45, and a power conversion efficiency of 2.2%, by applying a thermal annealing temperature of 150 °C for 10 min.  相似文献   

10.
We investigated the effect of active layer thickness on recombination kinetics of poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) based solar cells. Analysis of the fitted Lambert W-function of illuminated current density–voltage (JV) characteristics revealed increased recombination processes with increased active layer thicknesses. The ideality factor extracted from PCDTBT:PCBM solar cells continuously increased from 1.89 to 3.88 when photoactive layer thickness was increased from 70 to 150 nm. We found that such increase in ideality factor is closely related to the defect density which is increased with increased photoactive layer thickness beyond 110 nm. Therefore, the different density of defect states in PCDTBT:PCBM solar cells causes the different recombination paths where solar cells with a thicker active layer (?110 nm) are considered to undergo coupled trap-assisted recombination processes while single-defect trap-assisted recombination is dominant for thinner (70–90 nm) PCDTBT:PCBM solar cells. As a result, we found that the optimal efficiencies of PCDTBT:PC71BM solar cells were limited to the active layers between 70 and 90 nm. Particularly, when PCDTBT:PC71BM solar cells were optimized with an active layer thickness of 70 nm, energy conversion efficiency reached 6.5% while an increase in thickness led to the reduction of efficiency to 4.7% at 133 nm but then an increase to 5.02% at 150 nm.  相似文献   

11.
In this communication, we designed two low bandgap D-A copolymers with same fluorinated thiadiazoloquinoxaline (TDQ) as acceptor and different donor units benzo[2,1-b;3,4-b′]dithiophene (P1) and benzo[1,2-b:4,5-b′]dithiophene (P2). P1 and P2 exhibit broad absorption profiles covering from 350 nm to 1150 nm and 350–950 nm, respectively with optical bandgaps of 1.06 eV and 1.18 eV, respectively. Both copolymers showed deep highest occupied molecular orbitals (HOMO), i.e. −5.38 eV and −5.26 eV, for P1 and P2. Their photovoltaic properties were evaluated using conventional devices with a structure of ITO/PEDOT:PSS/copolymer:PC71BM/Al. After the optimizations of the copolymer to PC71BM weight ratios, and concentration of the solvent additive (DIO), the devices showed overall power conversion efficiencies of 4.03% and 5.42% for the P1 and P2 based devices, respectively. The higher value of PCE of the P2 based device is attributed to the higher values of Jsc and FF, that is related to the higher hole mobility and better exciton dissociation efficiency. Although the PCEs of these devices are moderate, these ultra low band gap copolymers can be used for their potential application in tandem polymers solar cells. Finally, methanol treatment of the active layer was adopted to increase the PCE of the P2:PC71BM based polymer solar cells that resulted in an improved PCE up to 6.93%.  相似文献   

12.
A new star-shaped D–π–A molecule with triphenylamine (TPA) as core and donor unit, octyl cyanoacetate (CA) as end group and acceptor unit, and 2,2′-bithiophene vinylene (bTV) as π bridge, S(TPA-bTV-CA) was designed and synthesized for the application as donor materials in solution-processed bulk-heterojunction organic solar cells (OSCs). The compound is soluble in common organic solvents. The thermal, optical and electrochemical properties of the star molecule were studied. The OSC devices were fabricated by spin-coating the blend solution of the molecule as donor and PC70BM as acceptor (1:3, w/w). The OSC device based on S(TPA-bTV-CA)/PC70BM demonstrated a high open circuit voltage of 0.91 V, a short circuit current density of 4.64 mA/cm2, a fill factor (FF) of 50%, corresponding to a power conversion efficiency of 2.1%, under the illumination of AM 1.5, 100 mW/cm2.  相似文献   

13.
We report the use of chemically synthesized gold (Au)–silica core–shell nanorods with the length of 92.5 ± 8.0 nm and diameter of 34.3 ± 4.0 nm for the efficiency enhancement of bulk heterojunction (BHJ) polymer solar cells. Silica coated Au nanorods were randomly blended into the BHJ layers of these solar cells. This architecture inhibits the carrier recombination at the metal/polymer interface and effectively exploits light absorption at the surface plasmon resonance wavelengths of the Au–silica nanorods. To match the two plasmon resonant peaks of the Au–silica nanorods, we employed a low bandgap polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′] dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) to construct a solar cell. The absorption spectrum of PCPDTBT:[6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) is relatively wide and matches the two plasmon resonance peaks of Au–silica nanorods, which leads to greater plasmonic effects. We also constructed the poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC60BM) cells for comparison. The absorption spectrum of P3HT:PC60BM only overlaps one of the plasmon resonance peak of Au–silica nanorods. The efficiency of the P3HT:PC60BM device incorporating optimized Au–silica nanorods is enhanced by 12.9% from 3.17% to 3.58%, which is due to the enhanced light absorption. Compared with the P3HT:PC60BM device with Au–silica nanorods, the PCPDTBT:PC70BM device with 1 wt% Au–silica nanorods concentration has a higher efficiency of 4.4% with an increase of 26%.  相似文献   

14.
The morphology of the active layer of a bulk heterojunction solar cell, made of a blend of an electron‐donating polymer and an electron‐accepting fullerene derivative, is known to play a determining role in device performance. Here, a combination of molecular dynamics simulations and long‐range corrected density functional theory calculations is used to elucidate the molecular‐scale effects that even minor structural changes to the polymer backbone can have on the “local” morphology; this study focuses on the extent of polymer–fullerene mixing, on their packing, and on the characteristics of the fullerene–fullerene connecting network in the mixed regions, aspects that are difficult to access experimentally. Three representative polymer donors are investigated: (i) poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD); (ii) poly[(2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PBT4T‐2OD), where the fluorine atoms in the benzothiadiazole moieties of PffBT4T‐2OD are replaced with hydrogen atoms; and (iii) poly[(2,2′‐bithiophene)‐alt‐(4,7‐bis((2‐decyltetradecyl)thiophen‐2‐yl)‐5,6‐difluoro‐2‐propyl‐2H‐benzo[d][1,2,3]triazole)] (PT2‐FTAZ), where the sulfur atoms in the benzothiadiazole moieties of PffBT4T‐2OD are replaced with nitrogen atoms carrying a linear C3H7 side‐chain; these polymers are mixed with the phenyl‐C71‐butyric acid methyl ester (PC71BM) acceptor. This study also discusses the nature of the charge‐transfer electronic states appearing at the donor–acceptor interfaces, the electronic couplings relevant for the charge‐recombination process, and the electron‐transfer features between neighboring PC71BM molecules.  相似文献   

15.
《Organic Electronics》2008,9(5):661-666
Blends of regio-regular poly(3,3‴-didodecyl quaterthiophene) (PQT-12) with (6,6)-phenyl-C70-butyric acid methyl ester (PC70BM) were investigated as active layers for application in organic photovoltaics (OPV). By optimizing the PQT-12:PC70BM composition ratio and annealing conditions, power conversion efficiencies (η) of 1.4% could be obtained. Effects of different preparation parameters on the incident photon conversion efficiency (IPCE), short-circuit (Jsc), fill factor (FF), open-circuit voltage (Voc) and η are discussed.  相似文献   

16.
Formic acid (FA) was used as a novel additive in bulk heterojunction (BHJ) solar cells, which contains blends of poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl]] (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). The effect of FA on the performance of PTB7:PC71BM based BHJ solar cells is investigated. By the incorporation of FA, the device with the ratio of 6 vol % shows the best power conversion efficiency (PCE) of 9.04%, along with the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) being 24.11 mA/cm2, 0.72 V, and 52.11%, respectively. Experimental results suggest that FA has a strong influence on charge carrier dynamics with a significant increase in Jsc by ∼65% and the dramatically enhanced PCE is mainly due to the increase of absorption and exciton generation of the active layers and the improved charge-carrier mobility of the devices.  相似文献   

17.
We report high photovoltaic efficiency of over 9% in solution-processed, small-molecule (SPSM) 7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl)bis(6-fluoro-4(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo[c]1,2,5]thiadiazole) p-DTS(FBTTh2)2:[6-6]-phenyl C70 butyric acid methyl ester (PC70BM) blend based inverted BHJ solar cell by incorporating luminescent zinc oxide doped with sodium (ZnO:Na) quantum dots (QD) (l-ZnO) as a cathode buffer layer (CBL) in inverted bulk-heterojunction (BHJ) solar cells for the first time. The l-ZnO absorbs ultraviolet (UV) light and down-converts it to visible light. The l-ZnO layer's emission overlaps significantly with the absorption of p-DTS(FBTTh2)2, leading to an enhanced absorption by p-DTS(FBTTh2)2. This resulted in a significant enhancement of photo-current from 15.4 to 17.27 mA/cm2 and efficiency from 8% to 9.2% for ZnO and l-ZnO based devices, respectively. This is among one of the highest efficiency values reported so far in the case of SPSM based single junction BHJ solar cells. The luminescent ZnO layer also protects the active layer from UV-induced degradation as solar cells show high stability under constant solar light illumination retaining more than 90% (∼28 h) of its initial efficiency, whereas BHJ solar cells without the luminescent ZnO layer degraded to ∼50% of its initial value under same conditions. Since ZnO is an essential part of inverted organic solar cells, the luminescent l-ZnO CBL has great potential in inverted organic solar cells.  相似文献   

18.
Large-area photovoltaic devices have been fabricated using the blade coating technique. In this study, the use of accelerated blade motion in this technique significantly improved the thickness uniformity of blade-coated layers of polymer solar cells on an A4 glass substrate. Two types of active layers, P3HT:PC61BM and POD2T-DTBT:PC71BM, were studied. For the P3HT:PC61BM film, a thickness of 221 ± 14 nm was realised in a 12 × 15 cm2 active region with a coating blade acceleration of 8 mm/s2. For the POD2T-DTBT:PC71BM film, a thickness of 98 ± 6 nm was realised with a coating blade acceleration of 10 mm/s2. Ten cells, each measuring 0.9 cm × 12 cm and monolithically fabricated, were connected in series, yielding a total active area of 108 cm2. The power conversion efficiency of the resulting 10-cell module was 2.66% and 3.64% for P3HT:PC61BM and POD2T-DTBT:PC71BM, respectively. The blade coating technique involving the accelerated blade motion is therefore useful for fabricating low-cost large-area organic solar cells, and it may be a promising alternative for the commercialisation of organic solar cells.  相似文献   

19.
A simple and effective modification of phenyl‐C70‐butyric acid methyl ester (PC70BM) is carried out in a single step after which the material is used as electron acceptor for bulk heterojunction polymer solar cells (PSCs). The modified PC70BM, namely CN‐PC70BM, showed broader and stronger absorption in the visible region (350–550 nm) of the solar spectrum than PC70BM because of the presence of a cyanovinylene 4‐nitrophenyl segment. The lowest unoccupied molecular energy level (LUMO) of CN‐PC70BM is higher than that of PC70BM by 0.15 eV. The PSC based on the blend (cast from tetrahydrofuran (THF) solution) consists of P3HT as the electron donor and CN‐PC70BM as the electron acceptor and shows a power conversion efficiency (PCE) of 4.88%, which is higher than that of devices based on PC70BM as the electron acceptor (3.23%). The higher PCE of the solar cell based on P3HT:CN‐PC70BM is related to the increase in both the short circuit current (Jsc) and the open circuit voltage (Voc). The increase in Jsc is related to the stronger light absorption of CN‐PC70BM in the visible region of the solar spectrum as compared to that of PC70BM. In other words, more excitons are generated in the bulk heterojunction (BHJ) active layer. On the other hand, the higher difference between the LUMO of CN‐PC70BM and the HOMO of P3HT causes an enhancement in the Voc. The addition of 2% (v/v) 1‐chloronapthalene (CN) to the THF solvent during film deposition results in an overall improvement of the PCE up to 5.83%. This improvement in PCE can be attributed to the enhanced crystallinity of the blend (particularly of P3HT) and more balanced charge transport in the device.  相似文献   

20.
Filter-free narrowband photomultiplication-type planar heterojunction (PHJ) organic photodetectors (PM-PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The thick front donor layer is employed as an optical field adjusting (OFA) layer. The sequentially coated PC71BM will diffuse slightly into OFA layer, which works as interfacial electron traps to capture photogenerated electrons for assisting hole tunneling injection. The P3HT/PC71BM-based PM-PHOPDs exhibit narrowband response with full-width of half-maximum of 32 nm and external quantum efficiency (EQE) of 1700% at 650 nm under −20 V bias. Due to the enhanced hole transport and reduced charge recombination in PHJ compared to those in bulk heterojunction (BHJ), the EQE of P3HT/PC71BM-based narrowband PM-PHOPDs is twice as P3HT:PC71BM BHJ-based narrowband PM-OPDs under the same bias. The response peak of PM-PHOPDs is adjusted from 650 to 695 or 745 nm by incorporating SMPV1 or DRCN5T in OFA layers due to the red-shifted absorption edge. The EQEs of 3600% at 695 nm and 870% at 745 nm are obtained for P3HT:SMPV1 and P3HT:DRCN5T-based PM-PHOPDs under −20 V bias, respectively. This work provides a smart strategy to achieve narrowband PM-OPDs by designing different OFA layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号