首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-layer small-molecule blue fluorescent organic light-emitting diode (OLED) is fabricated by blade coating. The emission layer is based on a mixed host of 1-(7-(9,9′-bianthracen-10-yl)-9,9-dioctyl-9H-fluoren-2-yl)pyrene (PT-404) and electron-transport material 2,7-Bis(diphenylphosphoryl)-9,9′ -spirobifluorene (SPPO13), and the blue guest emitter is 4-4′-(1E,1′E)-2,2′-(naphthalene-2,6-diyl)bis(ethane-2,1-diyl)bis(N,N-bis(4-hexyl- Phenyl) aniline) (Blue D). A hole-transport layer of Poly-(9, 9-dioctylfluorenyl-2, 7-diyl)-co-(4, 4-(N-(4-sec-butylphenyl)) diphenylamine) (TFB) is added on top of PEDOT: PSS anode. The electrons are blocked away from TFB by a layer of pure host emission layer of PT-404 between TFB and the mixed –host emission layer. For the device with the electron transport layer of Tris(8-hydroxyquinolinato)aluminum (Alq3) blade-coated over the emission layer the efficiency and lifetime at initial brightness of 500 cd m−2 are 7.5 cd A−1 and 150 h for Alq3/CsF/Al cathode. When the Alq3/CsF/Al is replaced by simply CsF/Al over the mixed-host emission layer the efficiency and lifetime are 6.4 cd A−1 and 300 h (2 times longer than that of the Alq3/CsF/Al cathode). The lifetime depends on the electron-hole balance tuned by the mixed-host blending ratio as well as the electron injection from the cathode. This work shows good stability is possible for all-solution-processed blue OLED.  相似文献   

2.
《Organic Electronics》2007,8(6):683-689
White organic light-emitting diodes (WOLEDs) with four wavelengths were fabricated by using three doped layers, which were obtained by separating recombination zones into three emitter layers. Among these emitters, blue emissions with two wavelengths (456 and 487 nm) were occurred in the 4,4′-bis(carbazoyl-(9))-stilbene (BCS) host doped with a perylene dye. Also, a green emission was originated from the tris(8-quinolinolato)aluminum (III) (Alq3) host doped with a green fluorescent of 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano [6,7,8-ij]-quinolizin-11-one (C545T) dye. Finally, an orange emission was obtained from the N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) host doped with a 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) dye. The white light could be emitted by simultaneously controlling the emitter thickness and concentration of fluorescent dyes in each emissive layer, resulting in partial excitations among those three emitter layers. Electroluminescent spectra of the device obtained in this study were not sensitive to driving voltage of the device. Also, the maximum luminance for the white OLED with the CIE coordinate of (0.34, 0.34) was 56,300 cd/m2 at the applied bias voltage of 11.6 V. Also, its external quantum and the power efficiency at about 100 cd/m2 were 1.68% and 2.41 lm/W, respectively.  相似文献   

3.
《Organic Electronics》2008,9(3):333-338
Effects of doping molybdenum trioxide (MoO3) in N,N′-diphenyl-N,N′-bis(1,1′-biphenyl)-4,4′-diamine (NPB) are studied at various thicknesses of doped layer (25–500 Å) by measuring the current–voltage characteristics, the capacitance–voltage characteristics and the operating lifetime. We formed charge transfer complex of NPB and MoO3 by co-evaporation of both materials to achieve higher charge density, lower operating voltage, and better reliability of devices. These improved performances may be attributed to both bulk and interface properties of the doped layer. The authors demonstrated that the interface effects play more important role in lowering the operating voltage and increasing the lifetime.  相似文献   

4.
Energy level alignments at the interface of N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB)/VO2/fluorine-doped tin oxide (FTO) were studied by photoemission spectroscopy. The overall hole injection barrier between FTO and NPB was reduced from 1.38 to 0.59 eV with the insertion of a VO2 hole injection layer. This could allow direct hole injection from FTO to NPB through a shallow valence band of VO2. Surprisingly, VO2 can also act as a charge generation layer due to its small band gap of 0.80 eV. That is, its conduction band is quite close to the Fermi level, and thus electrons can be extracted from the highest occupied molecular orbital (HOMO) of NPB, which is equivalent to hole injection into the NPB HOMO.  相似文献   

5.
The energy level alignment and chemical reaction at the interface between the hole injection and transport layers in an organic light-emitting diode (OLED) structure has been studied using in-situ X-ray and ultraviolet photoelectron spectroscopy. The hole injection barrier measured by the positions of the highest occupied molecular orbital (HOMO) for N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1-biphenyl-4,4-diamine (NPB)/indium tin oxide (ITO) was estimated 1.32 eV, while that with a thin WO3 layer inserted between the NPB and ITO was significantly lowered to 0.46 eV. This barrier height reduction is followed by a large work function change which is likely due to the formation of new interface dipole. Upon annealing the WO3 interlayer at 350 °C, the reduction of hole injection barrier height largely disappears. This is attributed to a chemical modification occurring in the WO3 such as oxygen vacancy formation.  相似文献   

6.
The influence of charge transfer from organic molecules to transition metal oxide on molecular orientation characteristics of N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (α-NPD) was investigated. Absorption peaks originating from neutral and cationic states of α-NPD increased in absorbance when α-NPD was deposited on metal oxides (MoO2, MoO3, and WO3). Photoluminescence from this α-NPD was directional normal to the film plane. These results indicate that α-NPD is horizontally oriented near the metal oxide surfaces so that charge transfer from α-NPD to metal oxide occurs efficiently. Such horizontal orientation of α-NPD enhanced current density of hole-only α-NPD devices because of improvement of wave function overlap and charge transfer degree at the metal oxide/α-NPD interface.  相似文献   

7.
We report on a high-quality hybrid intermediate connector (IC) used in tandem organic light-emitting diodes (OLEDs), which is composed of an ultrathin MoO3 interlayer sandwiched between a n-type Cs2CO3-doped 4,7-diphenyl-1,10-phenanthroline (BPhen) layer and a p-type MoO3-doped N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) layer. The charge generation characteristics for light emission in tandem OLEDs have been identified by studying the interfaces and the corresponding devices. The hybrid IC structure exhibits superior charge generation capability, and its interfacial electronic structures are beneficial to the generation and injection of electrons and holes into bottom and top emission units, respectively. Compared to the organic-TMO bilayer and doped p–n junction structures, the hybrid IC structure combining MoO3-based interlayer and p-type doping can effectively decrease the driving voltage and improve the current efficiency of tandem devices due to the increased bulk heterojunction-like charge generation interfaces. Our results indicate that the TMO-based hybrid IC structure can be a good structure in the fabrication of high-efficiency tandem OLEDs.  相似文献   

8.
《Organic Electronics》2008,9(1):30-38
A multilayer organic light-emitting device (OLED) has been fabricated with a thin (0.3 nm) lithium fluoride (LiF) layer inserted inside an electron transport layer (ETL), aluminum tris(8-hydroxyquinoline) (Alq3). The LiF electron injection layer (EIL) has not been used at an Al/Alq3 interface in the device on purpose to observe properties of LiF. The electron injection-limited OLED with the LiF layer inside 50 nm Alq3 at a one forth, a half or a three forth position assures two different enhancing properties of LiF. When the LiF layer is positioned closer to the Al cathode, the injection-limited OLED shows enhanced injection by Al interdiffusion. The Al interdiffusion at least up to 12.5 nm inside Alq3 rules out the possible insulating buffer model in a small molecule bottom-emission (BE) OLED with a thin, less than one nanometer, electron injection layer (EIL). If the position is further away from the Al cathode, the Al diffusion reaches the LiF layer no longer and the device shows the electroluminescence (EL) enhancement without an enhanced injection. The suggested mechanism of LiF EL efficiency enhancer is that the thin LiF layer induces carrier trap sites and the trapped charges alters the distribution of the field inside the OLED and, consequently, gives a better recombination of the device. By substituting the Alq3 ETL region with copper phthalocyanine (CuPc), all of the electron injection from the cathode of Al/CuPc interface, the induced recombination at the Alq3 emitting layer (EML) by the LiF EL efficiency enhancer, and the operating voltage reduction from high conductive CuPc can be achieved. The enhanced property reaches 100 mA/cm2 of current density and 1000 cd/m2 of luminance at 5 V with its turn-on slightly larger than 2 V. The enhanced device is as good as our previously reported non-injection limited LiF EIL device [Yeonjin Yi, Seong Jun Kang, Kwanghee Cho, Jong Mo Koo, Kyul Han, Kyongjin Park, Myungkeun Noh, Chung Nam Whang, Kwangho Jeong, Appl. Phys. Lett. 86 (2005) 213502].  相似文献   

9.
《Organic Electronics》2014,15(3):785-791
Under white ambient illumination and without bias, a reflective organic light-emitting device (ROLED) comprising a microcavity cathode exhibited various colors for static information display applications by means of internal interference and absorption effects. The configuration of this microcavity cathode was a metal/organometallic/metal structure of Al (10 nm)/Ag (15 nm)/Ag nanoparticles doped inside tris(8-hydroxyquinolinato) aluminum (Alq3) (x nm)/Al (100 nm) with excellent conductivity. The thickness of the Ag:Alq3 played a crucial role in determining the reflection color; for example, varying it from 20, 40, 60, 80 and 100 nm yielded the colors light yellow, light orange, reddish purple, greenish blue, and light green, respectively. In the dark, this ROLED can be used to display information with an ultra-high contrast ratio by applying on a small bias, like conventional OLED displays. Hence, this ROLED is a highly promising candidate for applications in energy-saving electronic fixed-pattern signs, logos, indicators, and manual information displays.  相似文献   

10.
Mixed-ligand zinc complexes, i.e., 2-(2-hydroxyphenyl)benzothiazolato-5,7- dichloro-8-hydroxyquinolinato zinc(II) [ZnBTZ(Cl2q)], 2-(2-hydroxyphenyl) benzothiazolato-5,7-dimethyl-8-hydroxyquinolinato zinc(II) [ZnBTZ(Me2q)], and 2-(2-hydroxyphenyl)benzothiazolato-2-carbonitril-8-hydroxyquinolinato zinc(II) [ZnBTZ(CNq)], were synthesized and characterized. The metal complexes have high thermal stability (>300°C) and high glass-transition temperature (>150°C) and are suitable for optoelectronic applications. Optical properties of the synthesized complexes were characterized by using ultraviolet–visible (UV–Vis) and photoluminescence spectroscopy. Color tuning by changing the ligand was observed in synthesized complexes. Multilayered organic electroluminescent devices were fabricated having structure indium–tin oxide (ITO)/N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (α-NPD)/zinc complex/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/tris(quinolinolate)AlIII (Alq3)/LiF/Al using the synthesized complexes as emissive material. The electroluminescence spectra show peak emission centered at 532 nm, 572 nm, and 541 nm, respectively, for these materials. The emitted light has chromaticity with Commission Internationale d’Éclairage coordinates x = 0.35 and y = 0.56 for ZnBTZ(Cl2q), x = 0.49 and y = 0.47 for ZnBTZ(Me2q), and x = 0.48 and y = 0.40 for ZnBTZ(CNq) complex.  相似文献   

11.
Bidirectional negative differential resistance (NDR) at room temperature with high peak-to-valley current ratio (PVCR) of ~10 are observed from vertical organic light-emitting transistor indium-tin oxide (ITO)/N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine) (α-NPD)(60 nm)/Al(30 nm)/α-NPD(60 nm)/tris-(8-hydroxyquinoline) aluminium (Alq3)(50 nm)/Al by narrowing the transport channels for charge carriers with a thick-enough middle Al gate electrode layer to block charge carriers transporting from source electrode to drain electrode. When the transport channel for charge carriers gets large enough, the controllability of gate bias on the drain–source current gets weaker and the device almost works as an organic light-emitting diode only. Therefore, it provides a very simple way to produce NDR device with dominant bidirectional NDR and high PVCR (~10) at room temperature by narrowing transport channels for charge carriers in optoelectronics.  相似文献   

12.
The thermal stability of organic functional materials affects the performance and lifetime of organic light-emitting diodes (OLEDs). We have developed a thermally stable inverted OLEDs (IOLEDs) by employing silver (Ag) doped into 4,7-diphenyl-1,10-phenanthroline (Bphen) as an n-type doped electron injection layer (EIL). We found that the formation of Ag complexes by coordination reaction could enhance the thermal stability and produce an asymmetric diffraction pattern based on an analysis of grazing incidence small angle X-ray scattering. Interestingly, with the annealing temperature increasing to 100 °C, the electrical properties of electron-only cells show differentiated phenomenon that the current density based on Ag dopant remains basically unchanged, which is opposite to Cs2CO3 dopant. In addition, at the high temperature of 100 °C, the IOLEDs with Cs2CO3 doped Bphen as an EIL was damaged completely, while the Ag dopant-based devices still maintained good photoelectrical characteristics. Finally, we have demonstrated that the optimized IOLEDs achieved a 40.3% enhancement in current efficiency compared to the conventional device. This work provides a new strategy to increase the thermal stability and performance for the application of IOLEDs operated under high temperature.  相似文献   

13.
We demonstrate the thermal stability of transition-metal-oxide (molybdenum oxide; MoO3)-doped organic semiconductors. Impedance spectroscopy analysis indicated that thermal deformation of the intrinsic 1,4-bis[N-(1-naphthyl)-N′-phenylamino]-4,4′-diamine (NPB) layer is facilitated when the MoO3-doped NPB layer is deposited on the intrinsic NPB layer. The resistance of the intrinsic NPB layer is reduced from 300 kΩ to 3 kΩ after thermal annealing at 100 °C for 30 min. Temperature-dependent conductance/angular frequency–frequency (G/w-f-T) analysis revealed that the doping efficiency of MoO3, which is represented by the activation energy (Ea), is reduced after the annealing process.  相似文献   

14.
We conducted accelerated reliability tests of electron-only devices (EODs) and organic light-emitting diodes (OLEDs) differing only in their electron-transport material (ETM). High current stressing of EODs at 50 mA/cm2 showed that Bphen ~ Alq3 > TPBi > TAZ in terms of intrinsic material stability. In addition, the lowest unoccupied molecular orbital (LUMO) level and electron mobility have been identified as two other key material factors affecting the degradation rate of OLEDs. TAZ has a low electron mobility, a LUMO level misaligned with the Fermi level of the cathode, and poor material stability, leading to extremely poor reliability of devices with a TAZ electron-transport layer (ETL). In contrast, the OLED with a Bphen ETL exhibited more stable operation and a 76 × longer luminance lifetime. Due to its relatively high electron mobility and good stability as well as perfect energy level alignment with the cathode, Bphen has proven to be the most desirable ETM from the standpoint of OLED reliability.  相似文献   

15.
A study on p-doping of organic wide band gap materials with Molybdenum trioxide using current transport measurements, ultraviolet photoelectron spectroscopy and inverse photoelectron spectroscopy is presented. When MoO3 is co-evaporated with 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP), a significant increase in conductivity is observed, compared to intrinsic CBP thin films. This increase in conductivity is due to electron transfer from the highest occupied molecular orbital of the host molecules to very low lying unfilled states of embedded Mo3O9 clusters. The energy levels of these clusters are estimated by the energy levels of a neat MoO3 thin film with a work function of 6.86 eV, an electron affinity of 6.7 eV and an ionization energy of 9.68 eV. The Fermi level of MoO3-doped CBP and N,N′-bis(1-naphtyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (α-NPD) thin films rapidly shifts with increasing doping concentration towards the occupied states. Pinning of the Fermi level several 100 meV above the HOMO edge is observed for doping concentrations higher than 2 mol% and is explained in terms of a Gaussian density of HOMO states. We determine a relatively low dopant activation of ~0.5%, which is due to Coulomb-trapping of hole carriers at the ionized dopant sites.  相似文献   

16.
In this work we present a permeable-base transistor consisting of a 60 nm thick N,N′-diphenyl-N,N′-bis(1-naphthylphenyl)-1,1′-biphenyl-4,4′-diamine layer or a 40 nm thick 2,6-diphenyl-indenofluorene layer as the emitter, a Ca/Al/Ca multilayer as the metal base, and p-Si as collector. In the base, the Ca layers are 5 nm thick and the Al layer was varied between 10 and 40 nm, the best results obtained with a 20 nm thick layer. The devices present common-base current gain with both organic layer and silicon acting as emitter, but there is only observable common-emitter current gain when the organic semiconductor acts as emitter. The obtained common-emitter current gain, ~2, is independent on collector-emitter voltage, base current and organic emitter in a reasonable wide interval. Air exposure or annealing of the base is necessary to achieve these characteristics, indicating that an oxide layer is beneficial to proper device operation.  相似文献   

17.
In this paper, the bis‐condensed 4‐(dicyanomethylene)‐2‐methyl‐6‐[p‐(dimethylamino)styryl]‐4H‐pyran ( DCM) derivatives are introduced as a new class of red dye for organic light‐emitting devices (OLEDs). They showed more red‐shifted emission than the mono‐substituted DCM derivatives and the emission maxima increased as the electron‐donating ability of the aromatic donor group increased. On the basis of these results, red light‐emitting devices were fabricated with bis‐condensed DCM derivatives as red dopants. For a device of configuration ITO/TPD/Alq3 + DADB (5.2 wt.‐%)/Alq3/Al (where ITO is indium tin oxide, TPD is N,N′‐diphenyl‐N,N′‐bis(3‐methylphenyl)‐1,1′‐biphenyl‐4,4′‐diamine, Alq3 is tris(8‐hydroxyquinoline) aluminum, and DADB is [2,6‐bis[2‐[5‐(dibutylamino)phenyl]vinyl]‐4H‐pyran‐4‐ylidene]propanedinitrile), pure red emission was observed with Commission Internationale de l’Eclairage (CIE 1931) coordinates of (0.658, 0.337) at 25 mA/cm2.  相似文献   

18.
《Organic Electronics》2007,8(4):382-388
We propose a new method for obtaining the Fermi-level aligned energy band diagram and the electron and hole barrier heights in metal/organic structure. It is obtained from the known metal work function, vacuum level shift at metal/organic interface, and orbital states of organic material. This theory has two assumptions: (i) metal work function can be deviated from the original one at metal/organic interface and (ii) the energetic disorders of transport sites in interfacial layer are broadened and the broadening is related to the change of the metal work function. Our theoretical results are verified by using a conventional drift–diffusion model. This new approach to electrical characteristic simulation is applied to Mg:Ag/Alq3/Mg:Ag, Mg:Ag/Alq3/Al, and Mg:Ag/Alq3/LiF/Al structures and then the current–voltage curves are consistent with experimental ones. From these results, we conclude that the above two assumptions are reasonable. Also we find that built-in potential and intrinsic carrier density are very important besides barrier heights in order to obtain more accurate current–voltage characteristics.  相似文献   

19.
We reported on the fabrication of organic light-emitting devices (OLEDs) utilizing the two Al/Alq3 layers and two electrodes. This novel green device with structure of Al(110 nm)/tris(8-hydroxyquinoline) aluminum (Alq3)(65 nm)/Al(110 nm)/Alq3(50 nm)/N,N′-dipheny1-N, N′-bis-(3-methy1phyeny1)-1, 1′-bipheny1-4, 4′-diamine (TPD)(60 nm)/ITO(60 nm)/Glass. TPD were used as holes transporting layer (HTL), and Alq3 was used as electron transporting layer (ETL), at the same time, Alq3 was also used as emitting layer (EL), Al and ITO were used as cathode and anode, respectively. The results showed that the device containing the two Al/Alq3 layers and two electrodes had a higher brightness and electroluminescent efficiency than the device without this layer. At current density of 14 mA/cm2, the brightness of the device with the two Al/Alq3 layers reach 3693 cd/m2, which is higher than the 2537 cd/m2 of the Al/Alq3/TPD:Alq3/ITO/Glass device and the 1504.0 cd/m2 of the Al/Alq3/TPD/ITO/Glass. Turn-on voltage of the device with two Al/Alq3 layers was 7 V, which is lower than the others.  相似文献   

20.
A neutral ligand 9-(4-tert-butylphenyl)-3,6-bis(diphenylphosphineoxide)-carbazole (DPPOC) and its complex Tb(PMIP)3DPPOC (A, where PMIP stands for 1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone) were synthesized. DPPOC has a suitable lowest triplet energy level (24,691 cm?1) for the sensitization of Tb(III) (5D4: 20,400 cm?1) and a significantly higher thermal stability (glass transition temperature 137 °C) compared with the familiar ligand triphenylphosphine oxide (TPPO). Experiments revealed that the emission layer of the Tb(PMIP)3DPPOC film could be prepared by vacuum co-deposition of the complex Tb(PMIP)3(H2O)2 (B) and DPPOC (molar ratio = 1:1). The electroluminescent (EL) device ITO/N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-diphenyl-4,4′-diamine (NPB; 10 nm)/Tb(PMIP)3 (20 nm)/co-deposited Tb(PMIP)3DPPOC (30 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP; 10 nm)/tris(8-hydroxyquinoline) (AlQ; 20 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm) exhibited pure emission from terbium ions, even at the highest current density. The highest efficiency obtained was 16.1 lm W?1, 36.0 cd A?1 at 6 V. At a practical brightness of 119 cd m?2 (11 V) the efficiency remained above 4.5 lm W?1, 15.7 cd A?1. These values are a significant improvement over the previously reported Tb(PMIP)3(TPPO)2 (C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号