首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biohydrogen production from sugar industry effluents in a dual chamber microbial electrolysis cell (MEC) was investigated in this study. The MEC reactor was operated with different effluents as a substrate from cane sugar and raw sugar reprocessing units of sugar industry. The biohydrogen production was investigated using different cathode materials of Nickel plate, Nickel foam, Stainless Steel mesh. The performance of MEC was tested based on the production of hydrogen, coloumbic efficiency, hydrogen recovery and COD removal efficiency respectively. The MEC hydrogen productions revealed that cane sugar effluent was more effective as compared to raw sugar effluent. The experimental results showed that at an applied voltage of 1.0 V, Ni-foam exhibited maximum hydrogen production of 1.59 and 1.43 mmol/L/D in cane sugar and raw sugar effluents respectively, which was about twice than SS-mesh and 1.2 times Ni-plate. This study shows that Ni-foam is one of the potential candidate as low cost electrode for improving hydrogen production in MEC technology with the treatment of industrial effluents.  相似文献   

2.
Microbial electrolysis cells (MECs) could be integrated with dark fermentative hydrogen production to increase the overall system yield of hydrogen. The influence of catholyte pH on hydrogen production from MECs and associated parameters such as electrode potentials (vs Ag/AgCl), COD reduction, current density and quantity of acid needed to control pH in the cathode of an MEC were investigated. Acetate (10 mM, HRT 9 h, 24 °C, pH 7) was used as the substrate in a two chamber MEC operated at 600 mV and 850 mV applied voltage. The effect of catholyte pH on current density was more significant at an applied voltage of 600 mV than at 850 mV. The highest hydrogen production rate was obtained at 850 mV, pH 5 amounting to 200 cm3stp/lanode/day (coulombic efficiency 60%, cathodic hydrogen recovery 45%, H2 yield 1.1 mol/mol acetate converted and a COD reduction of 30.5%). Within the range (18.5–49.4 °C) of temperatures tested, 30 °C was found to be optimal for hydrogen production in the system tested, with the performance of the reactor being reduced at higher temperatures. These results show that an optimum temperature (approximately 30 °C) exists for MEC and that lower pH in the cathode chamber improves hydrogen production and may be needed if potentials applied to MECs are to be minimised.  相似文献   

3.
The performance of Microbial electrolysis cell (MEC) is affected by several operating conditions. Therefore, in the present study, an optimization study was done to determine the working efficiency of MEC in terms of COD (chemical oxygen demand) removal, hydrogen and current generation. Optimization was carried out using a quadratic mathematical model of response surface methodology (RSM). Thirteen sets of experimental runs were performed to optimize the applied voltage and hydraulic retention time (HRT) of single chambered batch fed MEC operated with dairy industry wastewater. The operating conditions (i.e) an applied voltage of 0.8 V and HRT of 2 days that showed a maximum COD removal response was chosen for further studies. The MEC operated at optimized condition (HRT- 2 days and applied voltage- 0.8 V) showed a COD removal efficiency of 95 ± 2%, hydrogen generation of 32 ± 5 mL/L/d, Power density of 152 mW/cm2 and current generation of 19 mA. The results of the study implied that RSM, with its high degree of accuracy can be a reliable tool for optimizing the process of wastewater treatment. Also, dairy industry wastewater can be considered to be a potential source to generate hydrogen and energy through MEC at short HRT.  相似文献   

4.
The development of efficient and economical cathode, operating at ambient temperature and neutral pH is a crucial challenge for microbial electrolysis cell (MEC) to become commercialize hydrogen production technology. In the present work, eight different electrodes are prepared by the electroplating of Ni, Ni–Co and Ni–Co–P on two base metals i.e., Stainless Steel 316 and Copper separately to use as cathode in MEC. Electrodeposited cathode materials have been characterized by XRD, XPS, FESEM, EDX and linear voltammetry. The fabricated cathodes show higher corrosion stability with improved electro-catalytic performance for the hydrogen production in the MECs as compared to the bare cathodes (SS316 and Cu). Data obtained from linear voltammetry and MEC experiments show that developed cathode possess four times higher intrinsic catalytic activity in comparison to bare cathode. Electrodeposited cathodes are intensively examined in membrane-less MEC, operating under applied voltage of 0.6 V in batch mode at 30 ± 2 °C temperature, in neutral pH with acetate as substrate and activated sludge as inoculum. Ni–Co–P electrodeposit on Stainless Steel 316 cathode gives maximum hydrogen production rate of 4.2 ± 0.5 m3(H2)m−3d−1, columbic efficiencies 96.9 ± 2%, overall hydrogen recovery 90.3 ± 4%, overall energy efficiency 241.2 ± 5%, volumetric current density 310 ± 5 Am−3. The net energy recovery and COD removal are 4.25 kJ/gCOD and 61%, respectively. Prepared cathodes show stable performance for continuous 5 batch cycle operations in MEC.  相似文献   

5.
Microbial electrolysis cell (MEC) is a bioelectrochemical technology that can produce hydrogen gas from various organic waste/wastewater. Extra voltage supply (>0.2 V) is required to overcome cathode overpotential for hydrogen evolution. In order to make MEC system more sustainable and practicable, it is necessary to minimize the external energy input or to develop other alternative energy sources. In this study, we aimed to improve the energy efficiency by intermittent energy supply to MECs (setting anode potential = −0.2 V). The overall gas production was increased up to ∼40% with intermittent energy input (on/off = 60/15sec) compared to control reactor. Cathodic hydrogen recovery was also increased from 62% for control MEC to 69–80% for intermittent voltage application. Energy efficiency was increased by 14–20% with intermittent energy input. These results show that intermittent voltage application is very effective not only for energy efficiency/recovery but also for hydrogen production as compared with continuous voltage application.  相似文献   

6.
In order to optimize operations of microbial electrolysis cell (MEC) for hydrogen production, microbial anode potential (MAP) was analyzed as a function of factors in biofilm anode system, including pH, substrate and applied voltage. The results in “H” shape reactor showed that MAP reflected the information when any factor became limiting for hydrogen production. Commonly, hydrogen generation started around anode potential of −250 mV to −300 mV. While, higher current density and higher hydrogen rate were obtained when MAP went down to −400 mV or even lower in this study. Biofilm anode could work normally between pH 6.5 and 7.0, while the lowest anode potential appeared around 6.8–7.0. However, when pH was lower 6.0 or substrate concentration was less than 50 mg L−1 in anode chamber, MAP went up to −300 mV or above, leading to hydrogen reduction. Applied voltage did not affect MAP much during the process of hydrogen production. Anode potential analysis also showed that planktonic bacteria in suspended solution presented positive effects on biofilm anode system and they contributed to enhance electron transfer by reducing internal resistance and lowering minimum voltage needed for hydrogen production to some extent.  相似文献   

7.
The objective of the present study was to construct a compact retrofit design of Microbial Electrolysis Cell (MEC) within an anaerobic digester. In this design, the cathode chamber is inserted in the anodic chamber for compactness, improved hydrogen production and wastewater treatment efficiency. The performance of the new design is compared with that of a conventional (dual chamber) MEC. A cumulative hydrogen of 40.05 ± 0.5 mL and 30.12 ± 0.5 mL were produced at the current density of 811.7 ± 20 and 908.3 ± 25 mA/m2 respectively for conventional and modified MEC system. The cathodic hydrogen recovery (CHR) defined as the recovery of electrons as hydrogen which was observed a maximum of 46.5 ± 0.8 and 38.8 ± 0.5% in conventional and modified MEC. The Coulombic efficiency (CE) defined as the recovery of total electrons in acetate as current was observed as 17.25 ± 0.15 and 16.82 ± 0.1% for conventional and modified MEC. In addition, the wastewater COD removal efficiency was observed to be 77.5 ± 1.0% and 75.6 ± 1.5 in 70 h for conventional and modified MEC designs. As shown in the work below, the modified compact design worked effectively to produce hydrogen under different COD concentrations; anolyte and catholyte concentrations; and applied potentials. Thus the modified compact MEC which is also a retrofit to an existing anaerobic digester can extend the use of anaerobic digesters and improve their economics in waste water treatment.  相似文献   

8.
We characterized electrode energy losses and ohmic energy loss in an upflow, single-chamber microbial electrolysis cell (MEC) with no metal catalyst on the cathode. The MEC produced 0.57 m3-H2/m3-d at an applied voltage of ∼1 V and achieved a cathodic conversion efficiency of 98% and a H2 yield of 2.4 mol H2/mol acetate. Eliminating the membrane lowered the ohmic energy loss to 0.005 V, and the pH energy loss became as small as 0.072 V. The lack of metal catalyst on the cathode led to a significant cathode energy loss of 0.56 V. The anode energy loss also was relatively large at 0.395 V, but this was artificial, due to the high positive anode potential, poised at +0.07 V (vs. the standard hydrogen electrode). The energy-conversion efficiency (ECE) was 75% in the single-chamber MEC when the energy input and outputs were compared directly as electrical energy. To achieve an energy benefit out of an MEC (i.e., an ECE >100%), the applied voltage must be less than 0.6 V with a cathodic conversion efficiency over 80%. An ECE of 180% could be achieved if the anode and cathode energy losses were reduced to 0.2 V each.  相似文献   

9.
This study describes a novel method for controlling applied voltage in a microbial electrolysis cell (MEC). It is demonstrated that the rate of hydrogen production could be maximized without excessive energy consumption by minimizing the apparent resistance of the MEC. A perturbation and observation algorithm is used to track the minimal apparent resistance by adjusting the applied voltage. The algorithm was tested in laboratory-scale MECs fed with acetate or synthetic wastewater. In all tests, changes in MEC performance caused by the variations in organic load, carbon source properties, and hydraulic retention time were successfully followed by the minimal resistance tracking algorithm resulting in maximum hydrogen production, while avoiding excessive power consumption. The proposed method of real-time applied voltage optimization might be instrumental in developing industrial scale MEC-based technologies for treating wastewaters with varying composition.  相似文献   

10.
The recent interest in microbial electrolysis cell (MEC) technology has led the research platform to develop full biological MECs (bioanode-biocathode, FB-MEC). This study focused on biohydrogen production from a biologically catalyzed MEC. A bioanode and a biocathode were initially enriched in a half biological MFC (bioanode-abiocathode, HB-MFC) and a half biological MEC (abioanode-biocathode, HB-MEC), respectively. The FB-MEC was established by transferring the biocathode of the HB-MEC and the bioanode of the HB-MFC to a two-chamber MEC. The FB-MEC was operated under batch (FB-MEC-B) and recirculation batch (FB-MEC-RB) modes of operation in the anodic chamber. The FB-MEC-B reached a maximum current density of 1.5 A/m2 and the FB-MEC-RB reached a maximum current density of 2.5 A/m2 at a similar applied voltage while the abiotic control system showed the maximum of 0.2 A/m2. Hydrogen production rate decreased in the FB-MEC compared to that of the HB-MEC. However, the cathodic hydrogen recovery increased from 42% obtained in the HB-MEC to 56% in the FB-MEC-B and 65% in the FB-MEC-RB, suggesting the efficient oxidation and reduction rates in the FB-MEC compared to the HB-MEC. The onset potential for hydrogen evolution reaction detected by linear sweep voltammetry analysis were −0.780 and −0.860 V vs Ag/AgCl for the FB-MEC-RB and the FB-MEC-B (−1.26 for the abiotic control MEC), respectively. Moreover, the results suggested that the FB-MEC worked more efficiently when the biocathode and the bioanode were enriched initially in half biological systems before transferring to the FB-MEC compared to that of the simultaneously enriched in one system.  相似文献   

11.
A cheap but efficient electrode material is required to explore and apply to microbial electrolysis cell (MEC) with high hydrogen evolution reaction (HER) efficiency and low over-potential loss. Pt coating carbon cloth (Pt/CC) was one of the most efficient catalyst for hydrogen production in current lab research, but it is difficult to be applied in practice because of expensive cost and week strength from the base material (carbon cloth). Thus a cheap and effective supporting base material is worth to evaluate on hydrogen recovery and loss to methane for the MEC future application. In this study, nickel foam (NF) was used as an alternative to expensive carbon cloth, and NF coated with Pt (Pt/NF) was applied and evaluated through catalytic performance, hydrogen production efficiency and economic assessment in comparison with Pt/CC. The Pt/NF showed a competitive HER performance to Pt/CC. The highest hydrogen yield was reached 0.71 ± 0.03 m3/m3·d by Pt/NF under 0.8 V, which exceeded 6%, 10% over Pt/CC and NF, respectively. The energy efficiency relative to the electrical energy input was 127% for Pt/NF and 123%, 110% for Pt/CC and NF, respectively. For fifteen cycles, the methane content of Pt/NF got the lowest due to its higher hydrogen evolution activity. The economic analysis showed a 56% reduction when using Pt/NF as supporting base in place of carbon cloth to achieve similar performance. The linear sweep voltammetry (LSV) showed the possibility to further reduce input voltage in a long term operation.  相似文献   

12.
An anodic syntrophic consortium (exoelectrogenic plus fermentative bacteria) able to use methanol as sole carbon source was developed for the first time in a bioelectrochemical system. In this frame, promising results were obtained in single chamber MFC, comparable to those obtained with readily biodegradable substrates. Regarding MEC operation, the presence of homoacetogenic bacteria led to electron recycling, avoiding net hydrogen production in single chamber MEC. In a double chamber MEC, satisfying results (in terms of coulombic efficiency and cathodic gas recovery) were obtained even though energy recovery still restrained the feasibility of the process. The approach used in this work with methanol opens a new range of possibilities for other complex substrates as electron donors for bioelectrosynthesis.  相似文献   

13.
Microbial electrolysis cell (MEC) provides a sustainable way for hydrogen production from organic matters, but it still suffers from the lack of efficient and cost-effective cathode catalyst. In this work carbon paper coated with Pd nanoparticles was prepared using electrochemical deposition method and used as the cathodic catalyst in an MEC to facilitate hydrogen production. The electrode coated with Pd nanoparticles showed a lower overpotential than the carbon paper cathode coated with Pt black. The coulombic efficiency, cathodic and hydrogen recoveries of the MEC with the Pd nanoparticles as catalyst were slightly higher than those with a Pt cathode, while the Pd loading was one order of magnitude less than Pt. Thus, the catalytic efficiency normalized by mass of the Pd nanoparticles was about fifty times higher than that of the Pt black catalyst. These results demonstrate that utilization of the cathode with Pd nanoparticles could greatly reduce the costs of the cathodic catalysts when maintaining the MEC system performance.  相似文献   

14.
Biohydrogen production through Microbial Electrolysis Cell (MEC) has drifted towards the development of suitable cost-effective cathode catalysts. In this study, two graphene hybrid metal oxide nanocomposites were used as catalysts to investigate hydrogen production in the MEC operated with sugar industry wastewater as substrate against phosphate buffer catholyte. Electrochemical characterizations exposed the better performance of NiO.rGO coated cathode which showed lesser overpotential at 600 mV and overall lowest resistance in the Nyquist plots than Ni-foam and Co3O4.rGO cathodes. The experimental results showed that at an applied voltage 1.0 V, NiO.rGO nanocomposite had exhibited maximum hydrogen production rate of 4.38 ± 0.11 mmol/L/D, Coloumbic efficiency of 65.6% and Cathodic hydrogen recovery of 20.8% respectively. The MEC performance in terms of biohydrogen production was 1.19 and 2.68 times higher than Co3O4.rGO and uncoated Ni-Foam. Hence, economical hybrid nanocomposite catalysts were demonstrated in MEC using industrial effluent for energy and environment sustainability.  相似文献   

15.
A biological hydrogen-producing system is configured through coupling an electricity-assisting microbial fuel cell (MFC) with a hydrogen-producing microbial electrolysis cell (MEC). The advantage of this biocatalyzed system is the in-situ utilization of the electric energy generated by an MFC for hydrogen production in an MEC without external power supply. In this study, it is demonstrated that the hydrogen production in such an MEC-MFC-coupled system can be manipulated through adjusting the power input on the MEC. The power input of the MEC is regulated by applying different loading resistors connected into the circuit in series. When the loading resistance changes from 10 Ω to 10 kΩ, the circuit current and volumetric hydrogen production rate varies in a range of 78 ± 12 to 9 ± 0 mA m−2 and 2.9 ± 0.2 to 0.2 ± 0.0 mL L−1 d−1, respectively. The hydrogen recovery (RH2), Coulombic efficiency (CE), and hydrogen yield (YH2) decrease with the increase in loading resistance. Thereafter, in order to add power supply for hydrogen production in the MEC, additional one or two MFCs are introduced into this coupled system. When the MFCs are connected in series, the hydrogen production is significantly enhanced. In comparison, the parallel connection slightly reduces the hydrogen production. Connecting several MFCs in series is able to effectively increase power supply for hydrogen production, and has a potential to be used as a strategy to enhance hydrogen production in the MEC-MFC-coupled system from wastes.  相似文献   

16.
通过电沉积方法制备了Ni-W-P合金,系统研究了硫酸镍浓度、钨酸钠浓度、次亚磷酸钠浓度、热处理温度等条件对Ni-W-P合金电极析氢活性的影响,并利用扫描电镜、X射线荧光光谱仪等技术对样品的表面形貌和组成等物理性质进行表征。实验结果表明:Ni-W-P合金电极是微生物电解池产氢技术的优良阴极材料,在外加电源0.9V条件下,其最大氢气产率为1.09m3/(m3.d),相应的电流密度和COD去除率分别为131A/m3与91.2%。  相似文献   

17.
In this work, a dual-chamber microbial electrolysis cell (MEC) with concentric cylinders was fabricated to investigate hydrogen production of three different lignocellulosic materials via simultaneous saccharification and fermentation (SSF). The maximal hydrogen production rate (HPR) was 2.46 mmol/L/D with an energy recovery efficiency of 215.33 % and a total energy conversion efficiency of 11.29 %, and the maximal hydrogen volumetric yield was 28.67 L/kg from the mixed substrate. The concentrations of reducing sugar and organic acids, the pH, and the current in the MEC system during hydrogen production were monitored. The concentrations of reducing sugar, butyrate, lactate, formate, and acetate initially increased during SSF and then decreased due to hydrogen production. Moreover, the highest current was obtained from the mixed substrate, which means that the mixed substrates are beneficial to microbial growth and metabolism. These results suggest that lignocellulosic materials can be used as substrate in a low-energy-input dual-chamber MEC system for hydrogen production.  相似文献   

18.
Methane production occurs during hydrogen gas generation in microbial electrolysis cells (MECs), particularly when single chamber systems are used which do not keep gases, generated at the cathode, separate from the anode. Few studies have examined the factors contributing to methane gas generation or the main pathway in MECs. It is shown here that methane generation is primarily associated with current generation and hydrogenotrophic methanogenesis and not substrate (acetate). Little methane gas was generated in the initial reaction time (<12 h) in a fed batch MEC when acetate concentrations were high. Most methane was produced at the end of a batch cycle when hydrogen and carbon dioxide gases were present at the greatest concentrations. Increasing the cycle time from 24 to 72 h resulted in complete consumption of hydrogen gas in the headspace (applied voltage of 0.7 V) with methane production. High applied voltages reduced methane production. Little methane (<4%) accumulated in the gas phase at an applied voltage of 0.6–0.9 V over a typical 24 h cycle. However, when the applied voltage was decreased to 0.4 V, there was a greater production of methane than hydrogen gas due to low current densities and long cycle times. The lack of significant hydrogen production from acetate was also supported by Coulombic efficiencies that were all around 90%, indicating electron flow was not altered by changes in methane production. These results demonstrate that methane production in single chamber MECs is primarily associated with current generation and hydrogen gas production, and not acetoclastic methanogenesis. Methane generation will therefore be difficult to control in mixed culture MECs that produce high concentrations of hydrogen gas. By keeping cycle times short, and using higher applied voltages (≥0.6 V), it is possible to reduce methane gas concentrations (<4%) but not eliminate methanogenesis in MECs.  相似文献   

19.
An integrated modeling, optimization, and control approach for the design of a microbial electrolysis cell (MEC) was studied in this paper. Initially, this study describes the improvement of the mathematical MEC model for hydrogen production from wastewater in a fed‐batch reactor. The model, which was modified from an already existing model, is based on material balance with the integration of bioelectrochemical reactions describing the steady‐state behavior of biomass growth, consumption of substrates, hydrogen production, and the effect of applied voltage on the performance of the MEC fed‐batch reactor. Another goal of this work is to implement a suitable control strategy to optimize the production of biohydrogen gas by selecting the optimal current and applied voltage to the MEC. Various simulation tests involving multiple set‐point changes, disturbance rejection, and noise effects were performed to evaluate the performance where the proposed proportional–integral–derivative control system was tuned with an adaptive gain technique and compared with the Ziegler–Nichols method. The simulation results show that optimal tuning can provide better control effect on the MEC system, where optimal H2 gas production for the system was achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A methane‐producing microbial electrolysis cell (MEC) is a technology to convert CO2 into methane, using electricity as an energy source and microorganisms as the catalyst. A methane‐producing MEC provides the possibility to increase the fuel yield per hectare of land area, when the CO2 produced in biofuel production processes is converted to additional fuel methane. Besides increasing fuel yield per hectare of land area, this also results in more efficient use of land area, water, and nutrients. In this research, the performance of a methane‐producing MEC was studied for 188 days in a flat‐plate MEC design. Methane production rate and energy efficiency of the methane‐producing MEC were investigated with time to elucidate the main bottlenecks limiting system performance. When using water as the electron donor at the anode during continuous operation, methane production rate was 0.006 m3/m3 per day at a cathode potential of ?0.55 V vs. normal hydrogen electrode with a coulombic efficiency of 23.1%. External electrical energy input was 73.5 kWh/m3 methane, resulting in a voltage efficiency of 13.4%. Consequently, overall energy efficiency was 3.1%. The maximum achieved energy efficiency was obtained in a yield test and was 51.3%. Analysis of internal resistance showed that in the short term, cathode and anode losses were dominant, but with time, also pH gradient and transport losses became more important. The results obtained in this study are used to discuss the possible contribution of methane‐producing MECs to increase the fuel yield per hectare of land area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号