首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
周燕萍  业巧林 《计算机科学》2018,45(4):100-105, 130
最小二乘对支持向量机(LSTSVM)是一种有效的分类技术。然而,该方法需计算点到平面的平方L2-范数距离,从而易受野值或噪声的影响。为了缓解此问题,提出了一种有效的鲁棒 LSTSVM方法,即基于L1-范数距离的LSTSVM(LSTSVML1D)。该方法由于使 用L1范数作为距离度量,因此不易受到野值或噪声数据的影响。此外,设计了一种有效的迭代算法,旨在求解目标问题,并从理论上证明了其收敛性。在人工数据集和UCI数据集上验证了LSTSVML1D 的有效性。  相似文献   

3.
针对最小二乘支持向量机缺乏稀疏性的问题,提出了一种基于边界样本的最小二乘支持向量机算法。该算法利用中心距离比来选取支持度较大的边界样本作为训练样本,从而减少了支持向量的数目,提高了算法的速度。最后将该算法在4个UCI数据集上进行实验,结果表明:在几乎不损失精度的情况下,可以得到稀疏解,且算法的识别速度有了一定的提高。  相似文献   

4.
5.
稀疏最小二乘支持向量机及其应用研究   总被引:2,自引:0,他引:2  
提出一种构造稀疏化最小二乘支持向量机的方法.该方法首先通过斯密特正交化法对核矩阵进 行简约,得到核矩阵的基向量组;再利用核偏最小二乘方法对最小二乘支持向量机进行回归计算,从而使最 小二乘向量机具有一定稀疏性.基于稀疏最小二乘向量机建立了非线性动态预测模型,对铜转炉造渣期吹炼 时间进行滚动预测.仿真结果表明,基于核偏最小二乘辨识的稀疏最小二乘支持向量机具有计算效率高、预 测精度好的特点.  相似文献   

6.
最小二乘双支持向量回归机(LSTSVR)通过引入最小二乘损失将双支持向量回归机(TSVR)中的二次规划问题简化为两个线性方程组的求解,从而大大减少了训练时间。然而,LSTSVR最小化基于最小二乘损失的经验风险易导致以下不足:(1)“过学习”问题;(2)模型的解缺乏稀疏性,难以训练大规模数据。针对(1),提出结构化最小二乘双支持向量回归机(S-LSTSVR)以提升模型的泛化能力;针对(2),进一步利用不完全Choesky分解对核矩阵进行低秩近似,给出求解S-LSTSVR的稀疏算法SS-LSTSVR,使模型能有效地训练大规模数据。人工数据和UCI数据集中的实验证明SS-LSTSVR不但可以避免“过学习”,而且能够高效地解决大规模训练问题。  相似文献   

7.
8.
音乐     
  相似文献   

9.
专题     
《数码摄影》2014,(2):42-79
  相似文献   

10.
不落俗套     
《电脑迷》2014,(1):95
  相似文献   

11.
生涯     
  相似文献   

12.
技术     
  相似文献   

13.
14.
影视     
  相似文献   

15.
杂谈     
  相似文献   

16.
17.
征稿启事     
  相似文献   

18.
《软件世界》2014,(2):7
  相似文献   

19.
答疑     
《数码摄影》2014,(2):148-153
  相似文献   

20.
休闲     
《软件工程师》2014,(3):59-61
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号