共查询到18条相似文献,搜索用时 62 毫秒
1.
针对云计算环境下已有的密文检索方案不支持检索关键词语义扩展、精确度不够、检索结果不支持排序的问题,提出一种支持检索关键词语义扩展的可排序密文检索方案。首先,使用词频逆文档频率(TF-IDF)方法计算文档中关键词与文档之间的相关度评分,并对文档不同域中的关键词设置不同的位置权重,使用域加权评分方法计算位置权重评分,将相关度评分与位置权重评分的乘积设置为关键词在文档索引向量上相应位置的取值;其次,根据WordNet语义网对授权用户输入的检索关键词进行语义扩展,得到语义扩展检索关键词集合,使用编辑距离公式计算语义扩展检索关键词集合中关键词之间的相似度,并将相似度值设置为检索关键词在文档检索向量上相应位置的取值;最后,加密产生安全索引和文档检索陷门,在向量空间模型(VSM)下进行内积运算,以内积运算的结果为密文检索文档的排序依据。理论分析和实验仿真表明,所提方案在已知密文模型和已知背景知识模型下是安全的,且具备对检索结果的排序能力;与多关键字密文检索结果排序(MRSE)方案相比,所提方案支持关键词语义扩展,查询准确率比MRSE方案更加准确可靠,而检索时间则与MRSE方案相差不大。 相似文献
2.
基于语义关系查询扩展的文档重构方法 总被引:36,自引:0,他引:36
已知文档与用户查询之间相同概念不同表达形式造成的词不匹配问题是影响信息检索效果的重要原因之一.该文提出了根据词之间的语义关系进行扩展和替换的文档重构方法.它与传统的查询扩展不同,实现了同一概念信息的聚集,是更接近于人类进行信息查找的思维方法.进一步地,研究给出一种有效的实时文档重构检索策略,解决了文档重构方法在实际应用中的可行性.在标准测试数据集上的实验表明,基于查询扩展的文档重构方法不仅比不扩展的最佳性能始终有14%~23.4%的提高,而且比相对应的传统查询扩展方法也有约16%的提高. 相似文献
3.
随着互联网时代的到来,搜索引擎开始被普遍使用。在针对冷门数据时,由于用户的搜索词范围过小,搜索引擎无法检索出需要的数据,此时查询扩展系统可以有效辅助搜索引擎来提供可靠服务。基于全局文档分析的查询扩展方法,提出结合神经网络模型与包含语义信息的语料的语义相关模型,来更深层地提取词语间的语义信息。这些深层语义信息可以为查询扩展系统提供更加全面有效的特征支持,从而分析词语间的可扩展关系。在近义词林、语言知识库“HowNet”义原标注信息等语义数据中抽取局部可扩展词分布,利用神经网络模型的深度挖掘能力将语料空间中每一个词语的局部可扩展词分布拟合成全局可扩展词分布。在与分别基于语言模型和近义词林的查询扩展方法对比实验中,使用基于语义相关模型的查询扩展方法拥有较高的查询扩展效率;尤其针对冷门搜索数据时,语义相关模型的查全率比对比方法分别提高了11.1个百分点与5.29个百分点。 相似文献
4.
随着互联网时代的到来,搜索引擎开始被普遍使用。在针对冷门数据时,由于用户的搜索词范围过小,搜索引擎无法检索出需要的数据,此时查询扩展系统可以有效辅助搜索引擎来提供可靠服务。基于全局文档分析的查询扩展方法,提出结合神经网络模型与包含语义信息的语料的语义相关模型,来更深层地提取词语间的语义信息。这些深层语义信息可以为查询扩展系统提供更加全面有效的特征支持,从而分析词语间的可扩展关系。在近义词林、语言知识库“HowNet”义原标注信息等语义数据中抽取局部可扩展词分布,利用神经网络模型的深度挖掘能力将语料空间中每一个词语的局部可扩展词分布拟合成全局可扩展词分布。在与分别基于语言模型和近义词林的查询扩展方法对比实验中,使用基于语义相关模型的查询扩展方法拥有较高的查询扩展效率;尤其针对冷门搜索数据时,语义相关模型的查全率比对比方法分别提高了11.1个百分点与5.29个百分点。 相似文献
5.
在垃圾短信检索中所使用的关键词与短信文本集中的词不匹配,从而影响检索效果。为此,提出一种基于上下文查询词扩展的检索方法,该方法根据关键词出现的上下文信息进行查询词扩展选择,同时考虑查询扩展词与整个查询语句及查询词的位置关系。选取3 000条短信文本进行实验,结果表明该方法能提高平均查准率。 相似文献
6.
为了更加有效地检索到符合用户复杂语义需求的图像,提出一种基于文本描述与语义相关性分析的图像检索算法。该方法将图像检索分为两步:基于文本语义相关性分析的图像检索和基于SIFT特征的相似图像扩展检索。根据自然语言处理技术分析得到用户文本需求中的关键词及其语义关联,在选定图像库中通过语义相关性分析得到“种子”图像;接下来在图像扩展检索中,采用基于SIFT特征的相似图像检索,利用之前得到的“种子”图像作为查询条件,在网络图像库中进行扩展检索,并在结果集上根据两次检索的图像相似度进行排序输出,最终得到更加丰富有效的图像检索结果。为了证明算法的有效性,在标准数据集Corel5K和网络数据集Deriantart8K上完成了多组实验,实验结果证明该方法能够得到较为精确地符合用户语义要求的图像检索结果,并且通过扩展算法可以得到更加丰富的检索结果。 相似文献
7.
查询扩展技术是在原有用户查询的基础上加入语义相关的新词,组成语义更准确的查询条件.文中对查询扩展算法中扩展词加权方法进行改进,提出一种基于初始用户查询意欲和词与词间语义关联性给扩展词加权的方法.根据此算法得到的扩展词权值不仅反映了该扩展词和原关键词间的关联性,还反映出该扩展词和查询关键词集合中所有元素的关联性.因此,可将基于语义树的查询扩展问题转换为扩展词权值wiis,o,p的计算,如何计算出权值wijs,o,p是文中的核心.实验证明,该算法提高了检索的查准率. 相似文献
8.
查询扩展技术是在原有用户查询的基础上加入语义相关的新词,组成语义更准确的查询条件。文中对查询扩展算法中扩展词加权方法进行改进,提出一种基于初始用户查询意欲和词与词间语义关联性给扩展词加权的方法。根据此算法得到的扩展词权值不仅反映了该扩展词和原关键词间的关联性,还反映出该扩展词和查询关键词集合中所有元素的关联性。因此,可将基于语义树的查询扩展问题转换为扩展词权值wijs,o,p的计算,如何计算出权值wijs,o,p是文中的核心。实验证明,该算法提高了检索的查准率。 相似文献
9.
语义查询扩展中词语-概念相关度的计算 总被引:16,自引:0,他引:16
在基于语义的查询扩展中,为了找到描述查询需求语义的相关概念,词语.概念相关度的计算是语义查询扩展中的关键一步.针对词语.概念相关度的计算,提出一种K2CM(keyword to concept method)方法.K2CM方法从词语.文档.概念所属程度和词语.概念共现程度两个方面来计算词语.概念相关度问语.文档.概念所属程度来源于标注的文档集中词语对概念的所属关系,即词语出现在若干文档中而文档被标注了若干概念.词语.概念共现程度是在词语概念对的共现性基础上增加了词语概念对的文本距离和文档分布特征的考虑.3种不同类型数据集上的语义检索实验结果表明,与传统方法相比,基于K2CM的语义查询扩展可以提高查询效果. 相似文献
10.
11.
12.
13.
跨语言信息检索指以一种语言为检索词,检索出用另一种或几种语言描述的一种信息的检索技术,是信息检索领域重要的研究方向之一。近年来,跨语言词向量为跨语言信息检索提供了良好的词向量表示,受到很多学者的关注。该文首先利用跨语言词向量模型实现汉文查询词到蒙古文查询词的映射,其次提出串联式查询扩展、串联式查询扩展过滤、交叉验证筛选过滤三种查询扩展方法对候选蒙古文查询词进行筛选和排序,最后选取上下文相关的蒙古文查询词。实验结果表明: 在蒙汉跨语言信息检索任务中引入交叉验证筛选方法对信息检索结果有很大的提升。 相似文献
14.
15.
基于用户兴趣的查询扩展语义模型 总被引:1,自引:0,他引:1
罗建利 《计算机工程与应用》2006,42(32):126-130
自然语言中词的同义现象和歧义现象一直是降低信息检索查全率和查准率的关键,在Web搜索引擎上显得更加突出。提出了一种基于用户兴趣的查询扩展语义模型,通过构建基于Yahoo的语义ontology知识库消除同义现象,设计客户端的用户兴趣挖掘模型消除歧义现象。实验结果显示该方法能有效提高Web信息检索的查全率与查准率。 相似文献
16.
17.
一种基于潜在语义分析的查询扩展算法 总被引:5,自引:0,他引:5
该文提出一种新的查询扩展算法。通过对文本进行潜在语义分析,引入计算词语间语义相似度的方法,将文本聚类应用到检索的交互过程中,以提高信息检索的质量。实验结果表明该算法对于提高检索的准确率是十分有效的。 相似文献
18.
查询扩展技术通过向初始查询请求中加入相似或者相关的词,来减少查询请求与相关文献在表达上的不匹配现象,改善检索性能.本文利用语义单元的语义表达能力和语义单元之间的关系,将与初始查询具有密切语义关系的查询词或短语加入到初始查询请求中,更加全面地表示了用户的查询意愿.算法的时间复杂度为O(L),只与搜索请求的长度L有关,与语义单元表示库的规模无关,这对实时性要求较高的搜索引擎来讲是很实用的. 相似文献