首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To study the role of acidic residues in modulation of NMDA receptors by spermine, we used site-directed mutagenesis of receptor subunits and voltage-clamp recording in Xenopus oocytes. Sixteen glutamate and aspartate residues, located in the first two thirds of the putative extracellular loop of the NR1A subunit, were individually mutated. This region of NR1A shows homology with bacterial amino acid binding proteins, a bacterial polyamine binding protein, and a bacterial spermidine acetyltransferase. Mutation of D669 to asparagine (D669N), alanine (D669A), or glutamate (D669E) abolished the "glycine-independent" form of spermine stimulation in heteromeric NR1A/NR2B receptors. These mutations also markedly reduced inhibition by ifenprodil and by protons at NR1A/NR2B receptors. Mutations at the equivalent position (D690) in NR1B, which contains the insert encoded by exon 5, reduced the pH sensitivity of NR1B/NR2B receptors. Thus, the effects of mutations at D669 are not prevented by the presence of exon 5, and the influence of exon 5 is not prevented by mutations at D669 (D690 in NR1B). Mutations at NR1A (D669) had little or no effect on the potencies of glutamate and glycine and did not alter voltage-dependent block by Mg2+ or the "glycine-dependent" form of spermine stimulation. Surprisingly, the D669N and D669A mutations, but not the D669E mutation, reduced voltage-dependent block by spermine at NR1A/NR2 receptors. Mutations in NR2B at a position (D668) equivalent to D669 did not alter spermine stimulation or sensitivity to pH and ifenprodil. However, mutations D668N and D668A but not D668E in NR2B reduced voltage-dependent block by spermine. Screening of the negative charges at NR1A(D669) and NR2B(D668) may be involved in voltage-dependent block by spermine. D669 in NR1A could form part of a binding site for polyamines and ifenprodil and/or part of the proton sensor of the NMDA receptor. Alternatively, this residue may be critical for coupling of modulators such as spermine, protons, and ifenprodil to channel gating.  相似文献   

2.
N-Methyl-D-aspartate (NMDA) receptors are modulated by extracellular spermine and protons and are blocked in a voltage-dependent manner by spermine and polyamine derivatives such as N1-dansyl-spermine (N1-DnsSpm). The effects of mutations in the first and third transmembrane domains (M1 and M3) and the pore-forming loop (M2) of NMDA receptor subunits were studied. Surprisingly, some mutations in M2 and M3 of the NR1 subunit, including mutations at W608 and N616 in M2, reduced spermine stimulation and proton inhibition. These mutations may have long-range allosteric effects or may change spermine- and pH-dependent gating processes rather than directly affecting the binding sites for these modulators because spermine stimulation and proton inhibition are not voltage dependent and are thought to involve binding sites outside the pore-forming regions of the receptor. A number of mutations in M1-M3, including mutations at tryptophan and tyrosine residues near the extracellular sides of M1 and M3, reduced block by spermine and N1-DnsSpm. The effects of these mutants on channel block were characterized in detail by using N1-DnsSpm, which produces block but not stimulation of NMDA receptors. Block by N1-DnsSpm was studied by using voltage ramps analyzed with the Woodhull model of channel block. Mutations at W563 (in M1) and E621 (immediately after M2) in the NR1A subunit and at Y646 (in M3) and N616 (in the M2 loop) in the NR2B subunit reduced the affinity for N1-DnsSpm without affecting the voltage dependence of block. These residues may form part of a binding site for N1-DnsSpm. Mutation of a tryptophan residue at position W607 in the M2 region of NR2B greatly reduced block by N1-DnsSpm, and N1-DnsSpm could easily permeate channels containing this mutation. The results suggest that at least parts of the M1 and M3 segments contribute to the pore or vestibule of the NMDA channel and that a tryptophan in M2 (W607 in NR2B) may contribute to the narrow constriction of the pore.  相似文献   

3.
The dopaminergic antagonist haloperidol has an eight- to 10-fold higher affinity for NMDA receptors containing the NR2B (epsilon2) subunit, showing the same subunit specificity as ifenprodil, polyamines, and magnesium. In the present study, we have compared the effects of mutations altering polyamine and ifenprodil sensitivity on haloperidol sensitivity of NMDA receptors. As seen for spermidine stimulation, high-affinity haloperidol inhibition is governed by the region around amino acid 198, based on results from chimeric murine NR2A/NR2B (epislon1/epsilon2) receptors. Mutation of epsilon2E201 in this region to asparagine or arginine causes a 10-fold decrease in the ability of haloperidol to inhibit 125I-MK-801 binding. Epsilon2E201 does not govern the interactions of ifenprodil, because all of the mutants at epsilon2E201 exhibited wild-type affinity for ifenprodil. Mutation of epsilon2R337 causes a 400-fold loss in apparent affinity for ifenprodil but does not change the effects of haloperidol. The structural determinants of spermidine stimulation do not perfectly match those for haloperidol inhibition, as mutations of E200 remove haloperidol inhibition but do not alter polyamine stimulation. The present results thus demonstrate that although spermidine, haloperidol, and ifenprodil share subunit selectivity and overlapping pharmacology, they also have specific structural determinants.  相似文献   

4.
5.
The NMDA type of ligand-gated glutamate receptor requires the presence of both glutamate and glycine for gating. These receptors are hetero-oligomers of NR1 and NR2 subunits. Previously it was thought that the binding sites for glycine and glutamate were formed by residues on the NR1 subunit. Indeed, it has been shown that the effects of glycine are controlled by residues on the NR1 subunit, and a "Venus flytrap" model for the glycine binding site has been suggested by analogy with bacterial periplasmic amino acid binding proteins. By analysis of 10 mutant NMDA receptors, we now show that residues on the NR2A subunit control glutamate potency in recombinant NR1/NR2A receptors, without affecting glycine potency. Furthermore, we provide evidence that, at least for some mutated residues, the reduced potency of glutamate cannot be explained by alteration of gating but has to be caused primarily by impairing the binding of the agonist to the resting state of the receptor. One NR2A mutant, NR2A(T671A), had an EC50 for glutamate 1000-fold greater than wild type and a 255-fold reduced affinity for APV, yet it had single-channel openings very similar to those of wild type. Therefore we propose that the glutamate binding site is located on NR2 subunits and (taking our data together with previous work) is not on the NR1 subunit. Our data further imply that each NMDA receptor subunit possesses a binding site for an agonist (glutamate or glycine).  相似文献   

6.
Previous work with recombinant receptors has shown that the identity of the NMDA NR2 subunit influences receptor affinity for both glutamate and glycine. We have investigated the developmental change in NMDA receptor affinity for both glutamate and glycine in acutely dissociated parietal cortex neurons of the rat, together with the expression during ontogeny of NR2A and NR2B mRNA and protein. Whereas there is little change in NMDA receptor glutamate affinity with age, a population of NMDA receptors emerges in 14- and 28-d-old animals with a markedly reduced affinity for glycine (mKD = approximately 800 nM) and a reduced sensitivity to the NR2B subunit-selective NMDA antagonist ifenprodil. These changes are paralleled by a developmental increase in the expression of NR2A. Thus, in mature animals a population of NMDA receptors appears with a lower affinity for glycine that might not be saturated under normal physiological conditions. Ifenprodil (10 microM) inhibits virtually all of the NMDA receptor-evoked current in very young neurons that contain a single population of receptors exhibiting a high affinity for glycine (mKD = approximately 20 nM). In older neurons, which contain NMDA receptors with both high and low affinities for glycine, ifenprodil (10 microM) inhibits both the high-affinity population and a significant proportion of the low-affinity component, thus revealing three pharmacologically distinct populations of NMDA receptors in single neurons. Moreover, these observations suggest that ifenprodil might bind with high affinity to NMDA receptors containing both NR2A and NR2B subunits as well as those containing only NR2B.  相似文献   

7.
Hypothalamo-neurohypophysial magnocellular neurons display specific electrical activities in relation to the mode of release of their hormonal content (vasopressin or oxytocin). These activities are under strong glutamatergic excitatory control. The implication of NMDA receptors in the control of vasopressinergic and oxytocinergic neurons is still a matter of debate. We here report the first detailed characterization of functional properties of NMDA receptors in voltage-clamped magnocellular neurons acutely dissociated from the supraoptic nucleus. All cells responded to NMDA with currents that reversed polarity around 0 mV and were inhibited by D-2-amino-5-phosphonovalerate (D-APV) and by 100 microM extracellular Mg2+ (at -80 mV). Sensitivity to the co-agonist glycine (EC50, 2 microM) was low compared with most other neuronal preparations. The receptors displayed low sensitivity to ifenprodil, were insensitive to glycine-independent potentiation by spermine, and had a unitary conductance of 50 pS. No evidence was found for two distinct cell populations, suggesting that oxytocinergic and vasopressinergic neurons express similar NMDA receptors. Characterization of NMDA receptors at different postnatal ages revealed a transient increase in density of NMDA currents during the second postnatal week. This was accompanied by a specific decrease in sensitivity to D-APV, with no change in NMDA sensitivity or any other properties studied. Supraoptic NMDA receptors thus present characteristics that strikingly resemble those of reconstituted receptors composed of NR1 and NR2A subunits. Understanding the functional significance of the development of NMDA receptors in the supraoptic nucleus will require further knowledge about the maturation of neuronal excitability, synaptic connections and neurohormone release mechanisms.  相似文献   

8.
Neuroprotective effects of ifenprodil, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, against glutamate cytotoxicity were examined in cultured rat cortical neurons. The viability of the cultures was markedly reduced by a 10-min exposure to glutamate followed by incubation with glutamate-free medium for 60 min. Ifenprodil and its derivative SL 82.0715 dose-dependently prevented cell death induced by glutamate. The NMDA antagonists MK-801 and 3-[(+/-)-2-carboxypiperazin-4-yl]propyl-1-phosphonic acid also prevented glutamate cytotoxicity with a potency similar to that of ifenprodil. Ifenprodil as well as MK-801 prevented NMDA-induced cytotoxicity, but did not affect kainate-induced cytotoxicity. Glutamate cytotoxicity was inhibited by removing extracellular Ca++ during and immediately after glutamate exposure. Ifenprodil and MK-801 reduced NMDA-induced Ca++ influx measured with rhod-2. Either spermidine, a polyamine modulatory site agonist, or glycine, a strychnine-insensitive glycine site agonist, potentiated NMDA- and glutamate-induced cytotoxicity. The protective effects of ifenprodil against NMDA- and glutamate-induced cytotoxicity were significantly reduced by spermidine, but not by glycine. These findings indicate that ifenprodil protects cortical neurons against glutamate cytotoxicity by selective antagonism of the polyamine modulatory site of the NMDA receptor complex.  相似文献   

9.
A cDNA encoding a 100-kDa subunit (XenNR1) of the N-methyl-D-aspartate (NMDA) glutamate receptor type has been cloned from Xenopus central nervous system. When XenNR1 is coexpressed in a mammalian cell line with a recently cloned 51-kDa non-NMDA receptor subunit (XenU1), also from Xenopus, it forms a functional unitary receptor exhibiting the pharmacological properties characteristic of both NMDA and non-NMDA receptors. Firstly, XenU1 can replace NR2 subunits, in complementing XenNR1 to introduce the ligand binding properties of a complete NMDA receptor. Second, responses to both NMDA and non-NMDA receptor agonists and antagonists were obtained in patch-clamp recordings from the cotransfected cells, but no significant responses were recorded when the cells were singly transfected. Third, from solubilized cell membranes from the cotransfected cells, an antibody to the NR1 subunit coprecipitated the binding sites of the non-NMDA receptor subunit. The unitary glutamate receptor has a unique set of properties that denote intersubunit interaction, including a glycine requirement for the responses to non-NMDA as well as to NMDA receptor agonists and voltage-dependent block by Mg2+ of the non-NMDA agonist responses.  相似文献   

10.
We investigated in rat hippocampus neurons whether 4-(aminobutyl)guanidine (agmatine), formed by decarboxylation of L-arginine by arginine decarboxylase and metabolized to urea and putrescine, can modulate the function of N-methyl-D-aspartate (NMDA) receptor channels. In cultured hippocampal neurons studied by whole-cell patch clamp, extracellular-applied agmatine produced a voltage- and concentration-dependent block of NMDA but not alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid nor kainate currents. Analysis of the voltage dependence of the block suggests that agmatine binds at a site located within the NMDA channel pore with a dissociation constant of 952 microM at 0 mV and an electric distance of 0.62. We also tested effects of several agmatine analogs. Arcaine (1,4-butyldiguanidine) also produced a similar voltage-dependent block of the NMDA current, whereas putrescine (1, 4-butyldiamine) had little effect, suggesting that the guanidine group of agmatine is the active moiety when blocking the NMDA channel. Moreover, spermine (an endogenous polyamine) potentiated the NMDA current even in the presence of blocker agmatine or arcaine, suggesting that the guanidine-containing compounds agmatine and arcaine interact with the NMDA channel at a binding site different from that of spermine. Our results indicate that in hippocampal neurons agmatine selectively modulates the NMDA subclass of glutamate receptor channels mediated by the interaction between the guanidine group and the channel pore. The results support other data that agmatine may function as an endogenous neurotransmitter/neuromodulator in brain.  相似文献   

11.
Haloperidol and ifenprodil are N-methyl-D-aspartate (NMDA) receptor (NR) antagonists with preference for the NR1/NR2B subunit combination. Previous investigations utilizing 125I-MK801 binding assays with recombinant receptors distinguished certain structural determinants on the NR2B subunit for these two drugs, with glutamate 201 being critical for haloperidol sensitivity and arginine 337 being important for ifenprodil block. Other studies, however, suggested that these two sites pharmacologically overlap. In an attempt to resolve these discrepancies, we have characterized the actions of haloperidol and CP101,606, an ifenprodil analog, on the single-channel properties of NR1/NR2B(E201R) receptors transiently expressed in Chinese hamster ovary cells, because receptors formed by NR1/NR2B(R337K) appear to be nonfunctional. Haloperidol (10 microM) inhibited wild-type NR1/NR2B channels by decreasing the frequency of channel opening, whereas CP101,606 (0.5 microM) antagonized NR1/NR2B channel activity by decreasing both the open dwell time and the frequency of channel opening. The inhibitory actions of both drugs were virtually absent in the mutant NR1/NR2B(E201R) receptors. These results suggest that glutamate 201 is critical for both haloperidol and CP101,606 inhibition, thus demonstrating common features in the action of these two antagonists.  相似文献   

12.
1. Subunit-selective blockade of N-methyl-D-aspartate (NMDA) receptors provides a potentially attractive strategy for neuroprotection in the absence of undesirable side effects. Here, we describe a novel NR2B-selective NMDA antagonist, 4-?3-[4-(4-fluoro-phenyl)-3,6-dihydro-2H-pyridin-1-yl]-2-hydroxy-propoxy ?-benzamide (Ro 8-4304), which exhibits >100 fold higher affinity for recombinant NR1(001)/NR2B than NR1(001)/NR2A receptors. 2. Ro 8-4304 is a voltage-independent, non-competitive antagonist of NMDA receptors in rat cultured cortical neurones and exhibits a state-dependent mode of action similar to that described for ifenprodil. 3. The apparent affinity of Ro 8-4304 for the NMDA receptor increased in an NMDA concentration-dependent manner so that Ro 8-4304 inhibited 10 and 100 microM NMDA responses with IC50s of 2.3 and 0.36 microM, respectively. Currents elicited by 1 microM NMDA were slightly potentiated in the presence of 10 microM Ro 8-4304, and Ro 8-4304 binding slowed the rate of glutamate dissociation from NMDA receptors. 4. These results were predicted by a reaction scheme in which Ro 8-4304 exhibits a 14 and 23 fold higher affinity for the activated and desensitized states of the NMDA receptor, respectively, relative to the agonist-unbound resting state. Additionally, Ro 8-4304 binding resulted in a 3 4 fold increase in receptor affinity for glutamate site agonists. 5. Surprisingly, whilst exhibiting a similar affinity for NR2B-containing NMDA receptors as ifenprodil, Ro 8-4304 exhibited markedly faster kinetics of binding and unbinding to the NMDA receptor. This spectrum of kinetic behaviour reveals a further important feature of this emerging class of NR2B-selective compounds.  相似文献   

13.
1. The block by ifenprodil of voltage-activated Ca2+ channels was investigated in intracellular free calcium concentration ([Ca2+]i) evoked by 50 mM K+ (high-[K+]o) in Fura-2-loaded rat hippocampal pyramidal neurones in culture and on currents carried by Ba2+ ions (IBa) through Ca2+ channels in mouse cultured hippocampal neurones under whole-cell voltage-clamp. The effects of ifenprodil on voltage-activated Ca2+ channels were compared with its antagonist actions on N-methyl-D-aspartate- (NMDA) evoked responses in the same neuronal preparations. 2. Rises in [Ca2+]i evoked by transient exposure to high-[K+]o in our preparation of rat cultured hippocampal pyramidal neurones are mediated predominantly by Ca2+ flux through nifedipine-sensitive Ca2+ channels, with smaller contributions from nifedipine-resistant, omega-conotoxin GVIA-sensitive Ca2+ channels and Ca2+ channels sensitive to crude funnel-web spider venom (Church et al., 1994). Ifenprodil (0.1-200 microM) reversibly attenuated high-[K+]o-evoked rises in [Ca2+]i with an IC50 value of 17 +/- 3 microM, compared with an IC50 value of 0.7 +/- 0.1 microM for the reduction of rises in [Ca2+]i evoked by 20 microM NMDA. Tested in the presence of nifedipine 10 microM, ifenprodil (1-50 microM) produced a concentration-dependent reduction of the dihydropyridine-resistant high-[K+]o-evoked rise in [Ca2+]i with an IC50 value of 13 +/- 4 microM. The results suggest that ifenprodil blocks Ca2+ flux through multiple subtypes of high voltage-activated Ca2+ channels. 3. Application of the polyamine, spermine (0.25-5 mM), produced a concentration-dependent reduction of rises in [Ca2+]i evoked by high-[K+]o. The antagonist effects of ifenprodil 20 micro M on high-[K+]0-evoked rises in [Ca2+]. were attenuated by spermine 0.25 mM but not by putrescine 1 or 5 mM. In contrast,spermine 0.1 mM increased rises in [Ca2+]i evoked by NMDA and enhanced the ifenprodil (5 micro M) block of NMDA-evoked rises in [Ca2+]i.4. Similar results were obtained in mouse cultured hippocampal pyramidal neurones under whole-cell voltage-clamp. Ifenprodil attenuated both the peak and delayed whole-cell IB. with an IC% value of 18 +/- 2 micro M, whilst it attenuated steady-state NMDA-evoked currents with an IC50 of 0.8 +/- 0.2 micro M. Block of IBa by ifenprodil 10 JaM was rapid in onset, fully reversible and occurred without change in thecurrent-voltage characteristics of Ba. The ifenprodil block of IBa was enhanced on membrane depolarization and was weakly dependent on the frequency of current activation. Spermine 0.1 mM potentiated control NMDA-evoked currents but attenuated IB,. In agreement with the microspectrofluorimetric studies, co-application of spermine produced a small enhancement of the inhibitory effect of ifenprodil 10 micro M on NMDA-evoked responses whereas the reduction of I4 by ifenprodil 10 micro M in the presence of spermine was less than expected if the inhibitory effects of ifenprodil and spermine on IBa were simply additive.5. The results indicate that ifenprodil blocks high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones. Although the Ca2+ channel blocking actions of ifenprodil are observed at higher concentrations than those associated with NMDA antagonist activity, Ca2+ channel blockade may contribute, at least in part, to the established neuroprotective and anticonvulsant properties of the compound.  相似文献   

14.
Oxygen mass transfer calculations in large arteries   总被引:1,自引:0,他引:1  
Parkinsonism is characterised by overactive glutamatergic transmission in the cortico-striatal and subthalamo-medial pallidal pathways. Local blockade of glutamatergic transmission in these pathways can alleviate parkinsonian symptoms. The effectiveness of the treatment, however, is often limited by the simultaneous appearance of unwanted side-effects. These side-effects, including ataxia and dissociative anaesthesia, are particularly problematic when N-methyl-D-aspartate (NMDA) antagonists are used. In an attempt to overcome these problems we have attempted to manipulate excitatory amino acid (EAA)-mediated neurotransmission indirectly by targeting the NMDA receptor associated modulatory sites. We review evidence which demonstrates that antagonists for both the NMDA associated glycine and polyamine sites can reverse parkinsonian symptoms when injected intra-cerebrally in both MPTP-treated and bilateral 6-OHDA lesioned marmosets without eliciting unwanted side-effects. We further review preliminary data which suggest that ifenprodil, a polyamine site antagonist, has striking anti-parkinsonian actions in the marmoset. Potential mechanisms of action underlying these effects are discussed in terms of NMDA receptor subtypes and the neuroanatomical locus of action. The anti-parkinsonian efficacy of intra-striatally administered EAA antagonists leads us to question the view of dopamine acting in the striatum as a simple neuromodulator.  相似文献   

15.
The expression of mRNAs encoding subunits of the N-methyl-D-aspartate (NMDA) receptor was examined in cortical neurons maintained in primary culture. Cultures were prepared from embryonic day 17 rat neocortex. At this developmental age, levels of NR1, NR2A, NR2B, and NR2C mRNA were low or undetectable. Expression of NR1 mRNA increased progressively between days 1 and 21 in vitro. The amount of NR2A mRNA did not change between days 1 and 7 but increased between days 7 and 21. In contrast, levels of NR2B mRNA increased between days 1 and 7, with little further change after day 7. The level of NR2B mRNA was approximately 4-fold higher than that of NR2A mRNA in 21-day cultures. Using ligand binding assays, the proportion of NMDA receptors having a low affinity for ifenprodil was also found to increase over time in culture. The increase in the expression of receptors having a low affinity for ifenprodil and the increase in NR1 and NR2A mRNAs were reduced or prevented by maintaining cells in medium with a low concentration of serum. The results are consistent with the hypothesis that inclusion of the NR2A subunit in native NMDA receptors is responsible for their low affinity for ifenprodil. Splice variants of NR1 lacking the 5' (amino-terminal) insert were found to be the predominant forms of NR1 in cultured neurons. Variants containing the 5' insert represented only a small (< or = 5%) fraction of total NR1 mRNA, and their proportion was not altered as a function of time in culture. Time-dependent changes in the properties of NMDA receptors and in the expression of subunit mRNA occurring in cultured neurons are similar to changes observed in developing rat brain. Thus, the developmental sequence of NMDA receptor expression that occurs in vivo is partially retained in neurons maintained in vitro.  相似文献   

16.
The neurotoxic fragment corresponding to residues 25-35 of the beta-amyloid (A beta) peptide [A beta-(25-35)] has been shown to exert effects on (+)-[3H]5-methyl-10, 11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine maleate ([3H]MK-801) binding to the cation channel of the N-methyl-D-aspartate (NMDA) receptor. In the present study, we investigated whether the amidated and carboxylic acid C-terminated forms of A beta-(25-35) [A beta-(25-35-NH2) and A beta-(25-35-COOH), respectively] exert effects on other excitatory amino acid receptor and cation channel types in rat cortical membranes. Both A beta-(25-35-NH2) and A beta-(25-35-COOH) gave statistically significant dose-dependent inhibitions of [3H]glutamate and [3H]glycine binding to the agonist recognition sites of the NMDA receptor. Ten microM A beta-(25-35-NH2) and A beta-(25-35-COOH) gave 25% and 20% inhibitions of [3H]glutamate binding and 75% and 70% inhibitions of [3H]glycine binding, respectively. A beta-(25-35-NH2), but not A beta-(25-35-COOH), gave a small (ca. 17% at 10 microM) statistically significant increase of [3H]amino-3-hydroxy-5-methylisoxazole-4-propionate ([3H]AMPA) binding. [3H]kainate binding was not significantly affected by either peptide. Similarly, neither peptide affected either the maximal level or EC50 value for calcium stimulation of [3H]nitrendipine binding. It is concluded that A beta-(25-35) shows slight affinity for the agonist recognition sites of the NMDA receptor, but not for other excitatory amino acid receptor types or for L-type voltage-dependent calcium channels.  相似文献   

17.
The characteristics of binding sites in rat cerebral cortical synaptic membranes labeled by 125I-ifenprodil, a noncompetitive NMDA receptor antagonist, are described. 125I-ifenprodil was synthesized using Na125I in the presence of chloramine-T and purified by paper chromatography. Binding of the 125I-ligand was optimal at pH 7.7 in 5 mM Tris.HCl buffer. Equilibrium binding of 125I-ifenprodil was displaced by spermine (1 mM) but not by ifenprodil or its analogue, SL 82.0715 (both 16.7 microM). Zn2+, Ca2+, and Mg2+ inhibited specific binding of 125I-ifenprodil in a concentration-dependent manner, with IC50 values of 0.11, 1.1, and 1.7 mM, respectively. The dissociation constant (KD) for unlabeled ifenprodil determined by saturation binding was 205 nM. Scatchard plots of saturation data appeared curvilinear but were best described by a single-binding-site model (Hill coefficient = 0.95), with a density of binding sites (Bmax) of 141 pmol/mg of protein. Binding of 125I-ifenprodil was inhibited by polyamines, with a rank potency order of spermine > spermidine > putrescine = 1,3-diaminopropane. The pattern of inhibition produced by spermidine was apparently competitive. Ifenprodil congeners also fully inhibited polyamine-sensitive binding of 125I-ifenprodil, with a rank potency order of ifenprodil > SL 82.0715 = tibalosine > nylidrin = isoxsuprine. It was found that sigma/antitussive agents partially inhibited specific binding, but inclusion of the sigma drug GBR 12909 had little effect on the binding of 125I-ifenprodil, suggesting this site was not involved. The binding site labeled by 125I-ifenprodil is polyamine sensitive, has a discrete pharmacological profile, and apparently is unrelated to the sigma site.  相似文献   

18.
The effects of benzyl-polyamines were studied at recombinant N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus laevis oocytes. A number of mono-, di- and tri-benzyl polyamines, having benzyl substitutions on the terminal or central amino groups, inhibited responses of NR1/NR2 receptors in oocytes voltage-clamped at -70 mV. Among the most potent compounds was N1,N4, N8-tri-benzyl-spermidine (TB-3-4), which had an IC50 value of 0.2 microM. TB-3-4 was approximately 40-fold more potent at NR1/NR2A and NR1/NR2B receptors than at NR1/NR2C or NR1/NR2D receptors. Block by TB-3-4 was strongly voltage dependent. Using voltage ramps analyzed by the Woodhull model of voltage-dependent channel block, TB-3-4 was found to have a Kd(0) value of 5 microM and a zdelta value of 1.41 at NR1/NR2B channels, whereas the affinity of binding [Kd(0) = 250 microM] but not the degree of voltage-dependence (zdelta = 1.43) was much lower at NR1/NR2D channels. At a concentration of 10 microM, TB-3-4 had no effect on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors expressed from the GluR1 subunit, indicating that TB-3-4 is a selective NMDA antagonist. TB-3-4 did not permeate wild-type NMDA channels but could easily permeate channels containing an N616G mutation in the NR1 subunit. This mutation is presumed to increase the size of the narrowest constriction of the NMDA channel, thus allowing passage of TB-3-4. Benzyl-polyamines such as TB-3-4 represent a structurally novel class of NMDA receptor channel blockers.  相似文献   

19.
NMDA receptors are regulated by several different calcium-dependent processes. To determine if the presence of the intracellular calcium-binding protein calbindin-D28k can influence the calcium regulation of NMDA receptor activity, human embryonic kidney 293 cells were co-transfected with cDNAs for NMDA receptor subunits and calbindin. Recordings were made using the nystatin perforated patch technique to preserve intracellular contents. When compared with control cells (transfected with cDNA encoding beta-galactosidase in place of calbindin), the presence of calbindin had no effect on either calcium-dependent inactivation or the calcium-sensitive, time-dependent increase in glycine-independent desensitization of NMDA receptor-mediated currents. However, the development of calcium-dependent rundown of peak glutamate-evoked current was slowed significantly in calbindin versus beta-galactosidase co-transfected cells. This result was true for cells transfected with either NR1/NR2A or NR1/NR2B subunits, although calbindin was relatively less effective at inhibiting rundown in NR1/NR2B-expressing cells. NMDA peak current rundown has been attributed to calcium-induced depolymerization of the actin cytoskeleton. Therefore, our results indicate that although calbindin may not influence calcium-dependent regulatory processes occurring very near the NMDA receptor channel, it appears to be more effective at buffering local elevations in intracellular calcium at the actin cytoskeleton.  相似文献   

20.
The effects of an antisense phosphodiester oligodeoxynucleotide (ODN) directed to the NR1 subunit of the NMDA receptor mRNA and of its corresponding sense ODN were investigated in mice. Treatment with the antisense ODN significantly increased the time mice spent in the open arms of an elevated maze while the total number of arm entries was unaltered. Furthermore, seizure latencies after the administration of an ED100 dose of NMDA (150 mg/kg) were significantly higher in antisense treated animals compared to vehicle controls. At the same time, treatment with NR1 antisense ODN significantly reduced the Bmax of [3H]CGS-19755 binding (2101 fmol/mg protein) compared to both vehicle (2787 fmol/mg protein) and sense (2832 +/- 39 fmol/mg protein) controls without any significant change in KD (33 nM). A corresponding reduction of [3H]CGP-39653 binding was also observed after treatment with NR1 antisense compared to both sense and vehicle controls. In contrast, neither antisense nor sense ODNs altered the proportion of high affinity glycine sites or the potency of glycine at either high or low affinity glycine binding sites to inhibit [3H]CGP-39653 binding. These results show that in vivo treatment with NR1 antisense ODNs to the NMDA receptor complex reduces antagonist binding at NMDA receptors and has pharmacological effects similar to those observed with some NMDA receptor antagonists. These results also suggest that treatment with antisense ODNs may provide another means to investigate allosteric modulation of receptor subtypes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号