首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reduced graphene oxide-Fe3O4(rGO—Fe3O4) composite has been prepared via a facile and effective hydrothermal method by synthesizing Fe3O4 nanospheres on the planes of reduced graphene oxide(rGO).Characterizations suggest the successful attachment of Fe3O4 nanospheres to rGO sheets.The rGO—Fe3O4composite(66.7 wt%of Fe3O4 in the composite) exhibits a stable capacity of 668 mAh g-1 without noticeable fading for up to 200 cycles in the voltage range of 0.001—3.0 V,and the superior performance of rGO-Fe3O4 is clearly established by comparison of the results with those from bare Fe3O4 nanospheres(capacity declined to 117 mAh g-1 only at the 200 th cycle).The excellent electrochemical performance of rGO—Fe3O4 composite can be attributed to the fact that the uniform dispersion of the Fe3O4 nanospheres growing on the rGO sheets avoids aggregation during Li uptake-release cycling,which is desired for cycle stability.Meanwhile,the rGO sheets afford not only elastic buffer to alleviate the volume variations of Fe3O4nanospheres,but also good ionic and electronic transport medium in the electrode.  相似文献   

2.
The effects of temperature and pressure on density, microstructure and mechanical properties of powder compacts during hot isostatic pressing(HIPping) were investigated. Optimized HIPping parameters of temperature range from 900 to 940℃, pressure over 100 MPa and holding time of 3 h, were obtained. Tensile properties after different heat treatments show that both the geometry of samples and cooling rate have a significant influence on mechanical properties. Finite element method was used to predict the temperature field distribution during HIPped sample cooling, and the experimental results are in agreement with simulation prediction. The interaction of HIPping parameters was analyzed based on the response surface methodology(RSM) in this study.  相似文献   

3.
The LiYF4 single crystals singly doped Ho3+ and co-doped Ho3+, Pr3+ ions were grown by a modified Bridgman method. The Judd-Ofelt strength parameters (Ω2, Ω4, Ω6) of No3+ were calculated according to the absorption spectra and the Judd-Ofelt theory, by which the radiative transition probabilities (A), fluorescence branching ratios (β) and radiative lifetime (τ rad) were obtained. The radiative lifetimes of 5/6 and 5/7 levels in Ho3+ (1 mol%):LiYF4 are 10.89 and 20.19 ms, respectively, while 9.77 and 18.50 ms in Ho3+/pr3+ doped crystals. Hence, the τ rad of 5/7 level decreases significantly by introduction of Pr3+ into Ho3+:LiYF4 crystal which is beneficial to the emission of 2.9 μm. The maximum emission cross section of Ho3+:LiYF4 crystal located at 2.05 μm calculated by McCumber theory is 0.51 ×10-20 cm2 which is compared with other crystals. The maximum emission cross section at 2948 nm in Ho3+/pr3+ co-doped LiYF4 crystal obtained by Fuchtbauer- Ladenburg theory is 0.68 × 10-20 cm2, and is larger than the value of 0.53 × 10-20 cm2 in Ho3+ singly doped LiYF4 crystal. Based on the absorption and emission cross section spectra, the gain cross section spectra were calculated. In the Ho3- ions singly doped LiYF4 crystal, the gain cross sections for 2.05 μm infrared emission becomes positive once the population inversion level reaches 30%. It means that the pump threshold for obtaining 2.05 μm laser is probably lower which is an advantage for Ho3+-doped LiYF4 2.05 μm infrared lasers. The calculated gain cross section for 2.9 μm mid-infrared emission does not become positive until the population inversion level reaches 40% in Ho3+/pr3+:LiYF4 crystal, but 50% in Ho3+ singly doped LiYF4 crystal, indicating that a low pumping threshold is achieved for the H03+:5/6 → 5/7 laser operation with the introduction of Pr3+ ions. It was also demonstrated that Pr3+ ion can deplete rapidly the lower laser Ho3+:5/7 level and has influence on t  相似文献   

4.
As a leading surface modification approach,hydrosilylation enables freestanding silicon nanocrystals(Si NCs) to be well dispersed in a desired medium.Although hydrosilylation-induced organic layers at the NC surface may somehow retard the oxidation of Si NCs,oxidation eventually occurs to Si NCs after relatively long time exposure to air.We now investigated the oxidation of hydrosilylated Si NCs in the frame work of density functional theory(DFT).Three oxygen configurations that may be introduced by the oxidation of a Si NC are considered.It is found that a hydrosilylated Si NC is less prone to oxidation than a fully H-passivated Si NC in the point of view of thermodynamics.At the ground state,backbond oxygen(BBO) and hydroxyl(OH) hardly change the gap between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of a hydrosilylated Si NC.At the excited state,the decrease in the HOMO-LUMO gap induced by the introduction of doubly bonded oxygen(DBO) is more significant than that induced by the introduction of BBO or OH.We have correlated the changes in the optical absorption(emission) of a hydrosilylated Si NC after oxidation to those of the HOMO—LUMO gap at the ground state(excited state).  相似文献   

5.
A new three-component and magnetically responsive NiFe2O4@PANI@Ag nanocomposite has been fabricated by coating of nickel ferrite, NiFe2O4, nanoparticles with polyaniline (PANI) and subsequent immobilization of silver nanoparticles onto the surface of polyaniline shell. The as-prepared nanocomposite has been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The saturation magnetization of the NiFe2O4 core decreases dramatically after coating with polyaniline and silver nanoparticles, however, the nanocomposite NiFe2O4@PANI@Ag can be still separated from solution media through magnetic decantation. The antibacterial activity of the synthesized nanocomposite was studied and compared with those of naked NiFe2O4, NiFe2O4@PANI and some standard antibacterial drugs.  相似文献   

6.
In the present work,the dissimilar joining of a Ti_3AI-based alloy to a Ni-based superalloy was attempted by gas tungsten arc(GTA) welding technology.Sound joints were successfully achieved by using a Cu—Ni alloy as filler material.According to X-ray energy dispersive spectroscopy and X-ray diffraction analysis results three transitional layers at the weld/Ti_3AI interface were verified as follows:Ti_2AINb phase dissolved with Cu and Ni;AI(Cu,Ni)_2Ti,(Cu,Ni)_2Ti and(Nb,Ti) solid solution;Cu-rich phase and a complex multi-element phase.The In718/weld interface is characterized by solid solutions of Ni,Cu,Cr,Fe and Nb.The average tensile strength of the as-welded joints at room temperature is 1 63 MPa,and after a post—weld heat treatment it is increased slightly to 177 MPa.The fracture occurred at the surfacial layer of the joined Ti_3AI base alloy,indicating that the Ti_2AINb layer dissolved with Cu and Ni is the weak link of the Ti_3AI/ln71 8 joint.  相似文献   

7.
A route combining powder metallurgy and subsequent friction stir processing was utilized to fabricate carbon nanotube(CNT) reinforced Al(CNT/AI) and 6061 Al(CNT/6061AI) composites.Microstructural observations indicated that CNTs were uniformly dispersed in the matrix in both CNT/AI and CNT/6061 AI composites.Mg and Si elements tended to segregate at CNT—Al interfaces in the CNT/6061 AI composite during artificial aging treatment.The tensile properties of both the Al and 6061 Al were increased by CNT incorporation.The electrical conductivity of CNT/AI was decreased by CNT addition,while CNT/6061 AI exhibited an increase in electrical conductivity due to the Mg and Si segregation.  相似文献   

8.
Three types of photocatalysts were synthesized by metal organic chemical vapor deposition and impregnation methods using the almond shell activated carbon as support. These photocatalysts denoted by (TiO2/ASAC (V), TiO2/ASAC (11) and TiO2/ASAC (12)) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and nitrogen adsorption-desorption isotherms. SEM observation shows that TiO2 was deposited on activated carbon surface. XRD results confirm that TiO2 existed in a mixture of anatase and rutile phases. The DRS spectra show the characteristic absorption edge of TiO2 at approximate 380 nm corresponding to the optical band gap of 3.26 eV. Besides, FTIR spectrum indicated the presence of (Ti-O) groups. The specific surface area of photocatalysts decreased drastically in comparison with the original activated carbon. The catalysts were very efficient for the photodegradation of total organic carbon (TOC) from industrial phosphoric acid solution under UV irradiation. The kinetics of photocatalytic TOC degradation was found to follow a pseudo- first-order model. The prepared TiO2/ASAC showed high photoactivity for the photodegradation of TOC in the following order: TiO2/ASAC (V) 〉 TiO2/ASAC (11) 〉 TiO2/ASAC (12) 〉 ASAC 〉 TiO2 (P25).  相似文献   

9.
Ce-incorporated apatite(Ce-HA) nano-scale particles with different Ce percentage contents(atomic ratio of Ce to Ce + Ca is 5%,10%and 20%,respectively) were synthesized via a simple wet chemical method in this study.The crystal structure,chemical groups,thermal stability,crystal morphologies and crystal sizes of the Ce-HA nano-particles were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and transmission electron microscopy(TEM).The influences of reaction temperature,reaction time,pH value,and the atomic ratio of Ce to Ce + Ca on the structure and performance of Ce-HA particles were studied.The results show that the lattice constants,particle sizes,crystallinity and thermal stability of Ce-HA vary with the doped Ce contents.With the increase of Ce content,the lattice constants of the Ce-HA nano-particles remarkably increase but the particle size,crystallinity and thermal stability gradually decrease.The reaction temperature as well as the reaction time has no significant effect on the properties of the final products,while the pH value has a direct relationship with their final chemical composition.The obtained Ce-HA nanosize particles possess potential application in preparing artificial bone implants,bone tissue engineering scaffold and other bioactive coatings.  相似文献   

10.
Nb-doped TiO2 nanoparticles were prepared by hydrothermal treatment of titanate nanotubes in niobium oxalate aqueous solution.The effect of Nb doping and rutile content on the photoelectrochemical performance based on TiO2 powder electrodes was investigated.The results show that Nb-doped TiO2 with a small amount of rutile exhibits the enhanced photoelectric conversion efficiency for dye-sensitized solar cell.The highest photoelectric conversion efficiency of 8.53%is obtained for 1%Nb—TiO2 containing a small amount of rutile.When a small amount of rutile contained in 2%Nb—TiO2,a higher photoelectric conversion efficiency of8.77%is achieved.  相似文献   

11.
In-situ dendrite-reinforced metallic glass matrix (MGM) composites with the composition of Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 were prepared with a vacuum arc melter by the copper mold suction casting. Effect of different normal loads and sliding velocities on the tribological properties of MGM composites was studied. The results showed that the friction coefficient and wear rate of composites initially descended with increasing the normal load and reached a minimum of 0.339 and 1.826 × 10^-4 mm^3/(N m) at 10 N, respectively, then ascended. Similarly, the friction coefficient and wear rate of composites initially decreased with the increase in the sliding velocity and reached a minimum of 0.330 and 2.389 × 10^-4 mm^3/(N m) at 0.4 m/s and 0.3 m/s, respectively, then raised. The wear mechanism of composites was mainly adhesive wear accompanied by abrasive wear at lower normal load and sliding velocity. However, the wear mechanism of composites was abrasive wear and adhesive wear as well as delamination at higher normal load and sliding velocity due to the nucleation and propagation of surface and subsurface cracks during the wear process. The flake-like and particle-like wear debris was the dominant shapes of debris observed.  相似文献   

12.
Most related investigations focused on the effects of borate glass on cell proliferation/biocompatibility in vitro or bone repair in vivo; however, very few researches were carried out on other cell behaviors. Three novel borate bioglasses were designed as scaffolds for bone regeneration in this wok. Comparative effects of three bioglasses on the behaviors of osteoblastic MC3T3-E1 cells were evaluated. Excellent cytocompatibility of these novel borate bioglasses were approved in this work. Meanwhile, the promotion on cell proliferation, protein secretion and migration with minor cell apoptosis were also discussed in details, which contributed to the potential clinical application as a new biomaterial for orthopedics.  相似文献   

13.
The micro-alloying effects of Y on the microstructure, mechanical properties, and bio-corrosion behavior of Mg69-xZn27Ca4Yx(x= 0, 1, 2 at.%) alloys were investigated through X-ray diffraction, compressive tests,electrochemical treatments, and immersion tests. The Mg69Zn27Ca4 alloy was found to be absolutely amorphous, and its glass-forming ability decreased with the addition of Y. The Mg68Zn27Ca4Y1 alloy exhibited an ultrahigh compressive strength above 1010 MPa as well as high capacity for plastic strain above 3.1%.Electrochemical and immersion tests revealed that these Y-doped MgeZ neC a alloys had good bio-corrosion resistance in simulated body fluid(SBF) at 37℃. The results of the cytotoxicity test showed high cell viabilities for these alloys, which means good bio-compatibility.  相似文献   

14.
Carbon nanotubes (CNTs) were dispersed in gas atomized Cu47.5Zr47.5Al5 (CZA) and CusoZrso (CZ) amorphous powders, in an effort to elucidate the mechanisms of adhesion of CNTs onto amorphous metallic powders. CNTs were homogenously dispersed in water using a zwitterionic (ZW) surfactant. Then CZA and CZ powders were submersed in the ZW-CNTsuspensions with varying amounts of dwell time in an ultrasonic bath. The ZW-CNT- metal powder suspensions were dried, and CNT-metal composite powders were obtained after decomposition of the surfactant by calcination. Zeta potential measurements on ZW-CNT-metal powder suspensions and scanning electron microscopy investigation into the CNT-metal composite powders both indicated an ideal dwell time, for a specific alloy composition, of metallic powders in ZW-CNT suspension to achieve optimal adhesion of CNTs onto amorphous metallic powder surfaces. The results are rationalized on the basis of hydrolysis of metal ions into suspension creating a net positive charge on the metallic powder surfaces, and the interaction between the charged powder surfaces and the charged hydrophilic head groups of ZW, which has the other end attached to CNTs.  相似文献   

15.
Lamellar nanostructures were induced in a plain martensitic low-carbon steel by using dynamic plastic deformation at room temperature.The nanostructured steel was hardened after annealing at 673 K for20 min,with a tensile strength increased from 1.2 GPa to 1.6 GPa.Both the remained nanostructures and annealing-induced precipitates in nano-scale play key roles in the hardening.  相似文献   

16.
In this study,AA 1050 aluminum alloy and commercially pure copper in annealed and severely plastic deformed conditions were used.The technique used for imposing the severe strain to the sheets was constrained groove pressing(CGP) process.The annealed and severely plastic deformed sheets were subjected to friction stir welding(FSW) at different rotation and traverse speeds.Cu was placed in advancing side.Constant offset of approximately 1 mm was used toward Al side for all welds.A range of welding parameters which can lead to acceptable welds with appropriate mechanical properties was found.For the FSWed CGPed samples,it was observed that the welding heat input caused grain growth and decrease in hardness value at Al side of the stir zone.It was found that,generally the weakest parts of weld joints of annealed and CGPed samples were Al base metal and stir zone,respectively.Further investigations showed that several forms of intermetallic compounds were produced.  相似文献   

17.
GdNi5 nanoparticles and GdNis/Gd2O3 nanocapsules (with GdNi5 core and Gd2O3 shell) were prepared by arcdischarge technique under different hydrogen partial pressure. The GdNi5 nanoparticles show irregular spherical shape and have a size distribution of 10-50 nm with an average diameter of 15 nm. In comparison, the GdNi5/Gd2O3 nanocapsules present spherical morphology and show a size distribution of 10-100 nm with an average diameter of 60 nm. Under a magnetic field change of 50 kOe, the maximum magnetic entropy change of GdNi5 nanoparticles is 13.5 J/(kg K) at 5 K, while the corresponding value of the GdNis/Gd2O3 nanocapsuels is only 5.7 J/(kg K) at 31 K. The origin of the large magnetic entropy change of GdNi5 nanoparticles is ascribed to its high atomic moments and small anisotropy energy barrier induced by its small particle size.  相似文献   

18.
Biological entities and inorganic materials have been in constant touch with each other ever since inception of life on earth.This method has lots of merits such as not requiring complex procedures,template supporting etc.In this work,Aloe vera plant mediated synthesis of tetragonal zirconia nanoparticles has been performed and thermogravimetric and differential thermal analysis(TG/DTA),X-ray diffraction(XRD),scanning electron microscopy(SEM) with energy dispersive X-ray spectroscopy(EDX),atomic force microscopy(AFM),ultraviolet—visible(UV—VIS) technique and Fourier transform infrared spectroscopy(FTIR) have been provided for characterizing the nanoparticles.Formation of homogeneously distributed spherical zirconia nanoparticles of 50—100 nm in size is predicted.The antimicrobial and antifungal properties are also investigated for synthesis of zirconia nanoparticles and the treated cotton by agar diffusion method against Staphylococcus aureus and Escherichia coli bacterial pathogens and fungal strains Candida albicans and Aspergillus niger,respectively.  相似文献   

19.
The aim of this study was to examine and quantify the growth of extension twins and the associated texture change in an extruded AM30 magnesium alloy during compression along the extrusion direction. Three stages of twin growth with increasing strain were observed due to twin-dislocation interactions, together with increasing texture volume fraction of {1210}〈0001〉 and {01- 10}〈0001〉 components. Stage I was characterized by a relatively slow and gradually accelerating growth. A steady-state twin growth was reached in stage II, where the twin width increased linearly with increasing strain. Stage III twin growth became decelerated, exhibiting a plateau-like character.  相似文献   

20.
Antibacterial materials play an important role in clinical application,and silver has been known to exhibit strong cytotoxicity towards a broad range of micro-organisms.In this work,the amorphous calcium phosphate with silver substitution(Ag-ACP) was synthesized by chemical precipitation method,and the valence of silver in ACP was adjusted by temperature.The processed Ag-ACP was combined with slightly acidic compounds to form new calcium phosphate cement(CPC).Our results indicate that the valence of silver in CPC was adjusted successfully by chemical precipitation method and heat treatment.X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) results demonstrated that silver ion in CPC-1 and CPC-2 existed in Ag3PO4;after heat treatment of 460 ℃,silver became more stable in CPC-3 and CPC-4.Silver in CPC-1 and CPC-2exhibited better releasing property.After heat treatment at 460 ℃,the amount of silver ion released from CPC decreased significantly.Besides,the antibacterial ability of Ag-CPC was adjusted by changing the valence of silver in Ag-CPC.Depending on the low valence of silver and good silver release,CPC-1 and CPC-2exhibited better antibacterial activity.We believe that this study will motivate the development and applications of antibacterial CPC in bone tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号