首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以二-(2-乙基己基)磷酸酯(P204)与单烷基磷酸酯(P538)作为协同萃取剂、磺化煤油为稀释剂,从模拟湿法磷酸溶液中萃取Fe3+,研究萃取时间、萃取剂浓度、萃取相比、萃取温度对Fe3+萃取效果的影响.结果表明,当萃取时间为25 min、萃取剂浓度为2 mol/L、萃取相比为2:1、萃取温度为25℃时,铁的单级萃取率...  相似文献   

2.
使用D2EHPA(二-(2-乙基己基)磷酸酯)与PEHEHPA(2-乙基己基磷酸单酯)进行协同萃取,以去除磷酸中的铁杂质。考察了萃取剂浓度、萃取时间、萃取温度、萃取相比等因素对磷酸中铁离子萃取率的影响。实验结果表明,当萃取温度为25℃,萃取时间为25min,萃取剂浓度为2mol/L,萃取相比2:1时,铁的单级萃取率最高可达90%。比单独使用D2EHPA与PEHEHPA萃取时的萃取率分别提高了15.38%和18.42%。这一研究结果表明协同萃取的方法在净化湿法磷酸方面具有较好的应用前景。  相似文献   

3.
袁飞刚 《化工进展》2019,38(10):4437-4443
二(2-乙基己基)磷酸(P204)常作为溶液净化除铁的萃取剂,P204-磺化煤油体系中Fe3+与有机相形成络合能力较强的萃合物,使得Fe3+反萃比较困难,需采用较高浓度的酸作为反萃剂,但高浓度的酸会破坏有机分子的结构,影响萃取剂循环利用。针对P204-磺化煤油负铁有机相反萃困难的问题,提出利用草酸为反萃剂对负载1g/L铁的P204-磺化煤油有机相的反萃行为进行研究,考察了反萃转速、草酸浓度、反萃温度、反萃时间和相比对Fe3+反萃率的影响。结果表明:以反萃转速200r/min,草酸0.4mol/L,反萃时间10min,反萃温度40℃,反萃相比1∶1,采用二级逆流萃取方式,铁的反萃率可以达到99%以上;Fe3+反萃过程是吸热反应,其反应的焓变为81.58kJ/mol,反萃过程符合准一级反应动力学方程,对应活化能为49.5kJ/mol。进一步研究了反萃后P204-磺化煤油有机相对Fe3+的萃取性能。结果表明:经5次草酸反萃后的P204-磺化煤油有机相萃铁性能几乎不变,对比于高浓度的酸反萃,草酸反萃简化了反萃流程,降低了萃取剂的消耗。  相似文献   

4.
以三辛胺(TOA)为萃取剂净化磷酸中的氟离子,考察了稀释剂、萃取剂浓度、萃取时间、温度对萃取的影响,并研究了磷酸中杂质离子的存在对脱氟性能的影响。结果表明,在萃取剂TOA浓度0.5 mol/L(稀释剂为磺化煤油),萃取时间20 min,温度303 K,转速200 r/min,相体积比(O/A)=1∶1的条件下,脱氟率可达70%以上。磷酸中[Fe3+]=0.02~0.07 mol/L,[Mg2+]=0.06~0.08 mol/L范围内,对萃取脱氟是有利的,铝离子和钙离子的存在均不利于氟、磷的分离。  相似文献   

5.
溶剂萃取法分离锌锰金属离子的实验研究   总被引:1,自引:0,他引:1  
以软锰矿和锌精矿同槽酸浸取得到硫酸锌、硫酸锰混合液,研究了从混合溶液中萃取分离锌离子、锰离子的萃取剂的选择以及适宜的萃取条件.实验结果表明,磷酸二(2-乙基己基)酯(P204)萃取锌的能力优于磷酸三丁酯(TBP),在室温、相比A/O=2∶ 1、萃取时间10 min、萃取级数5级、溶液pH为4.0,P204的体积分数为40%时,萃取率达到95%,萃取相锌质量浓度为27.15 g/L.反萃液为0.8 mol/L的稀硫酸,4级反萃,反萃液锌质量浓度可达到89.9 g/L,在此基础上提出了从软锰矿和锌精矿同槽酸浸取液中用P204萃取锌的工艺.  相似文献   

6.
用2-乙基己基膦酸单2-乙基己基酯(P507)作萃取剂,从铁含量高、钒含量低、杂质含量高的盐酸浸出液中萃取分离钒与铁.结果表明,在浸出液初始p H 0?0.6、萃取温度30℃、萃取时间15 min、相比(O/A)1:1及P507浓度20%(?)的优化条件下,钒和铁的单级萃取率分别为70%和5%.用硫酸作反萃剂,在反萃温度30℃、反萃时间12 min、相比(O/A)4:1及硫酸浓度368 g/L的优化条件下,钒和铁的单级反萃率分别为100%和3%.一级萃取和反萃后的反萃液含V(IV)18.62 g/L和Fe(II)0.37 g/L,分离效果良好,同时,钒与铝、钙、镁、锰等杂质也有较好的分离效果.  相似文献   

7.
对磷酸浸取含稀土磷矿得到的酸解溶液中稀土萃取回收进行研究。通过对萃取剂的选择,萃取和反萃条件的试验优化选取,从脱钙后得到的粗磷酸中利用萃取剂P204进行萃取,当相比为2∶1,P204浓度2 mol/L时,经过六级萃取后,萃取率达到97.13%。在相比O/A=1∶1,以6 mol/L HCl进行反萃时,一级反萃率可达到50%以上,采用六级可达近90%。  相似文献   

8.
以皂化二(2-乙基己基)磷酸酯(P204)为表面活性剂,选择醇为助表面活性剂,正庚烷为有机相,构建微乳体系,探究微乳体系对钛(IV)的萃取效率。考察了助表面活性剂的种类、p H值、水乳比、震荡时间及水浴温度等对钛(IV)萃取率的影响。确定了最佳工艺参数:以正丁醇为助表面活性剂,皂化P204、正丁醇、正庚烷的体积比为4∶15∶35,水浴温度298.15 K,P204与Na OH的物质的量比为1∶1.5,外水相p H值为2.0,水乳比8,振荡时间8min。该工艺条件下,当外水相钛(IV)浓度为100 mg/L,微乳体系对钛(IV)的萃取率为96.2%。萃取后的有机相用1.0 mol/L的盐酸进行反萃,钛(IV)的平均反萃率为88.1%。有机相使用1.0 mol/L氢氧化钠皂化后,可以循环使用。  相似文献   

9.
从高硅质钒矿浸出液中萃取钒的工艺研究   总被引:1,自引:0,他引:1  
研究了磷酸二异辛基酯(P204)从高硅质钒矿浸出液中萃取钒的工艺过程,考察了加入还原铁的量、有机相组成和萃取级数对钒的萃取率的影响,设计了正交实验考察p H值、相比、接触时间、静置时间对钒的萃取率的影响;并考察了反萃酸度对反萃率的影响。研究表明:用磷酸二异辛基酯(P204)萃取钒时,经六级萃取萃取率可达91.39%以上;用1.5 mol/L H2SO4经三级反萃,反萃率为89.16%。P204萃取提钒,可以使钒得到纯化与富集,简化后续工艺。  相似文献   

10.
经过水相氧化法净化的工业黄磷,由于加入铁盐,导致黄磷产品中的铁含量较高,达到了90 μg/g.因此,需要采用P204-石蜡萃取体系对精制黄磷进行处理.通过单因素实验,主要考察萃取剂质量分数、搅拌速度、萃取时间、萃取温度、相比对脱铁率和磷收率的影响.获得的最优条件为:萃取剂质量分数为15%,搅拌速度为500 r/min,萃取时间为20 min,萃取温度为70 ℃,相比(有机相与黄磷质量比)为10∶ 1.在最优条件下,一次萃取可以获得铁量约为10 μg/g、收率为68%左右的黄磷产品,能满足一般精细磷化工产品中的铁含量要求.  相似文献   

11.
P507从酸性硫脲浸金液中回收金   总被引:2,自引:0,他引:2  
研究了用P507的煤油溶液作为萃取剂,从酸性硫脲(TU)浸金液中回收金的性能. 用浓度为1.65 mol/L的P507萃取剂在料液[H2SO4]=0.335 mol/L, 相比O/A=1:1,两相接触时间5 min的条件下萃取金,得到金的一级萃取率达99.80%;用50 g/L的Na2SO3溶液反萃,一级反萃率达82.45%,同时达到金、铁的分离.  相似文献   

12.
通过萃取法脱除湿法磷酸中的金属阳离子,研究3种萃取剂在不同的实验温度、搅拌时间、相比等条件下对金属阳离子杂质的脱除效果。结果表明:在实验温度60~65℃、搅拌时间25 min、稀磷酸与萃取剂体积比1∶3条件下,P507(乙基己基磷酸单-2-乙基己酯)对金属阳离子脱除效果最明显,对Fe~(3+)、Al~(3+)、Mg~(2+)的脱除率分别达到63.3%、55.0%、47.1%。  相似文献   

13.
针对现行湿法炼锌综合回收铟过程中存在的铟分散损失严重和直收率低的问题,采用直接萃取法从次氧化锌酸性浸出液中回收铟,考察了萃取剂浓度、混合时间、硫酸浓度和萃取温度等因素对铟及主要金属离子萃取率及盐酸浓度和相比对铟反萃率的影响,绘制了萃取平衡等温线和反萃平衡等温线,进行了小型模拟实验和连续逆流萃取-反萃实验,重点考察主要金属离子在萃取和反萃过程中的分布与走向.结果表明,以10%P204为有机相,在相比(A/O)为2/1、逆流萃取级数为3级的条件下,浸出液中铟萃取率达99.9%,杂质铁、锌和镉的萃取率分别为1.5%,0.5%和1.1%.得到的负载有机相采用6 mol/L盐酸反萃,相比为1/5时4级反萃后,铟反萃率达100%,镉、锌和铁基本被全部反萃,反萃后的贫有机相可循环使用.  相似文献   

14.
赤泥是铝土矿生产氧化铝过程中产生的固体残渣,含有铁、硅、铝、钛及稀土等多种有价组分。在已预先分离赤泥中大部分铁、硅、铝、钛的前提下,采取溶剂萃取的方式对赤泥磷酸浸出液中的稀土作进一步分离与纯化,研究了在中性磷型萃取剂TBP、酸性磷型萃取剂P204和P507分别作用下,稀土La、Ce、Sc、Y以及主要杂质组分Al、Fe、Ti、Ca的萃取行为,结果表明:TBP对稀土的萃取效果较差,P507对稀土Sc、Y及杂质Fe、Ti的萃取能力较强,P204萃取稀土的能力优于P507;采用质量分数2%P204作为萃取剂,在溶液pH为1.5、相比为1∶3的条件下,磷酸浸出液中Sc、Y的萃取率分别为90%、99%,La、Ce及杂质Fe、Al、Ti、Ca萃取率均低于5%;将P204质量分数升至20%,La、Ce萃取率可分别达到85%、95%。因此可通过采用P204分步萃取的方式有效分离磷酸浸出液中的稀土。  相似文献   

15.
本文以硫酸铁为料液,用2-乙基-己基膦酸-单2-乙基己基酯(P507)萃取剂在硫酸介质中萃取Fe3+。研究了温度、时间、P507的浓度、初始酸度、相比等因素对Fe3+萃取率的影响,以及有机相的反萃工艺。研究结果表明:温度为25℃,平衡时间为35min,初始氢离子浓度为0.4 mol/L,相比A/O=2/1,P507的体积分数为35%的条件下,水相经过四级逆流萃取,Fe3+的萃取率可达99.66%;反萃酸度为4 mol/LHCl,相比A/O=1/2,反萃时间为7min,经三级逆流反萃,反萃率可达到99.90%,有机相可以循环使用。  相似文献   

16.
采用二(2-乙基己基)磷酸(P204)作萃取剂,航空煤油作稀释剂,对含有钙、镁、钠、钾等金属离子的赖氨酸水溶液进行萃取,以蒸馏水作为反萃取剂对有机相进行反萃取分离实验.结果表明,原料液初始pH值在4~5、P204与煤油体积比为3:2、有机相与水相比为2:1、反应萃取时间大于30min、搅拌转速约200rpm时,能够取得较好的萃取效果.以初始pH值≥3.5的蒸馏水为反萃取剂,蒸馏水与有机相体积比4:1,在150rpm的转速下搅拌20min能够较为完全地分离出赖氨酸,然后在其它条件相同的情况下,用初始pH<1的蒸馏水对有机相再次反萃取可分离出金属离子,从而实现萃取剂的重复利用.  相似文献   

17.
采用二(2-乙基己基)磷酸酯(P204)-磺化煤油萃取体系从高硫酸氰化尾渣矿浆电解液中富集铁离子,重点研究了P204浓度、相比(O/A)、振荡时间、振荡频率及温度等对Fe3+萃取率的影响及其萃取过程。研究表明,在P204体积分数为25%、电解液pH为1.5、温度25℃、O/A=1∶1、振荡时间10 min、振荡频率180r/min的条件下,电解液中Fe3+的单级萃取率可达97.73%以上,饱和萃取容量可达到21.57g/L。Fe3+在有机相中的萃取富集主要归因于其与P204分子结构中羟基的阳离子交换反应以及磷酰基的配位反应,形成的配合物为FeSO4A(HA)3与FeA3(HA)3。在草酸1mol/L、O/A=1∶1、振荡时间10min、振荡频率190r/min的条件下,负载有机相中Fe3+的单级反萃率可达82.64%以上,反萃液中铁主要以[Fe(C2O4)3<...  相似文献   

18.
本文以二-(2-乙基己基)磷酸酯(P204)和苯甲酸为复合萃取剂,在pH为-0.36的条件下,对磷矿酸解液中的镁离子进行萃取研究。考察了P204与苯甲酸的比例、稀释剂种类、萃取时间、复合萃取剂体积分数、萃取相比(O/A)对提取镁离子效果的影响。结果表明,选用磺化煤油作为稀释剂,当有机相中P204∶苯甲酸=1∶1,复合萃取剂体积分数为30%,磺化煤油体积分数为70%,萃取相比为2∶1,萃取时间为20 min时,镁离子的萃取率可达到63.56%,且此时磷矿酸解液中P2O5的回收率高于99%。这一研究实现了高酸度条件下镁离子的高效提取,对于湿法磷酸的净化具有重要价值。  相似文献   

19.
甲基异丁基酮净化湿法磷酸的研究   总被引:1,自引:0,他引:1  
湿法磷酸含有较多杂质,通过净化可拓宽其用途。以甲基异丁基酮为溶剂,采用溶剂萃取法净化湿法磷酸。研究了相比、萃取时间、搅拌转速、反萃剂加入量对五氧化二磷分配系数、氟离子和硫酸根选择性的影响。实验结果表明:相比对五氧化二磷分配系数影响明显,但对硫酸根的选择性影响不明显;萃取时间、搅拌转速对五氧化二磷分配系数影响并不明显;甲基异丁基酮对氟离子和硫酸根均有良好的选择性。相比(有机相与水相的体积比)为4∶1、萃取时间为10 min、搅拌转速为200 r/min、反萃剂加入量为萃取后萃取剂体积的15%,净化效果较佳。  相似文献   

20.
采用筛网孔径为75 μm的微分散轮盘萃取塔净化湿法磷酸,在TBP+煤油/磷酸/水为体系的实验条件下,研究了浓度为55%的湿法磷酸的萃取及反萃特性,考察了不同转速、总体积通量和相比对萃取率和反萃取率的影响。研究结果表明,萃取率随转速及相比的增大而增大,随总体积通量的增大而减小,最优萃取条件:转速为250 r/min,总体积通量为56.62 L/(m2?min),相比为4,磷酸萃取率可达55%;反萃率随转速的增大而增大,随相比及总体积通量的增大而减小,最优反萃条件:转速为300 r/min,总体积通量为56.62 L/(m2?min),相比为6,磷酸反萃率可达85 %。通过量纲为1化拟合出体积传质系数经验计算式为KXa=1.53×10?3p?0.28135Fr0.344493W/D,与实验规律吻合,可以为工业放大设计和优化提供了较好的实验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号