首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文针对地源热泵的核心技术问题,介绍了对两种典型地源换热器的散热试验研究:粉质粘土中的垂直单U管、地表水中的水平单U管。研究发现,两种换热器的传热性能差别很大。从开始试验到循环水温度稳定所需要的过渡时间上,地表水换热器比粉质粘土埋管型换热器要快得多。从传热能力来看,地表水换热器的单位管长换热量比粉质粘土垂直单U管要大。  相似文献   

2.
地埋管换热器传热模型的回顾与改进   总被引:1,自引:0,他引:1  
范蕊  马最良 《暖通空调》2006,36(4):25-29
回顾了国内外关于地埋管换热器的设计计算理论、传热模型及其计算方法,发现几乎所有的模型都未考虑地下水渗流的影响。举例说明地下水流动对地埋管换热器有较大的影响,建立了考虑热传导和地下水流动共同作用的地埋管换热器的传热模型,并且对单井地埋管进行了初步分析,结果表明地下水渗流能增强盘管的换热能力。  相似文献   

3.
饱和黏土中热交换桩承载力特性模型试验研究   总被引:1,自引:0,他引:1  
在28℃,28℃→55℃,28℃→55℃→28℃三种工况下,开展宁波饱和黏土中热交换桩承载力特性模型试验研究,先对桩土加热(降温),再进行静载荷试验,测定土体的温度和孔隙水压力、地表沉降及桩顶位移、桩身轴力和荷载–沉降试验数据,研究土体的热固结过程及桩负摩阻力的形成机制;其次,以模型试验为原型,利用Abaqus软件建立了考虑热流固耦合作用的桩–土有限元模型,将计算结果与试验结果进行对比验证,进而讨论温度对桩身轴力和桩侧摩阻力的影响,结果表明:加热升温后,桩、土发生膨胀变形,土中出现超静孔隙水压力;随着孔压的消散,土体发生热固结现象,且其固结沉降量大于桩体沉降量,地基最终表现为沉降变形,而桩侧出现下拉荷载,产生负摩阻力;随温度的升高,沿深度方向,桩身轴力衰减,热固结后土体的强度有所提高,桩侧摩阻力增大,单桩极限承载力随温度的升高而增大。  相似文献   

4.
X.Q. Zhai  Y. Yang 《Energy and Buildings》2011,43(11):3263-3270
A ground source heat pump (GSHP) system was designed and constructed in Minhang archives of Shanghai. As a demonstration project, it is the first archives to use a GSHP system in China. The system consists of two heat pumps with the rated cooling capacity of 500 kW for each and 280 boreholes with 80 m in depth. In the cooling mode, the heat extraction from the condenser of the heat pump was divided: part of it was rejected to the soil while the rest was used to reheat the air in air handling units. The GSHP system has continuously run for nearly two years. It was shown that the indoor thermal environment met the “Archives Design Code” issued by China national archives. Compared with an air source heat pump system which is widely used in archives buildings, the operating cost of the GSHP system is reduced by 55.8% and the payback time is about two years. Owing to its great potential in energy conservation, such kind of GSHP system is testified to be applicable to the air-conditioning systems of the archives buildings. Besides, the applications of GSHP systems corresponding to different climatic zones of China were analyzed.  相似文献   

5.
土壤耦合热泵系统地下埋管换热器传热模型的研究   总被引:6,自引:4,他引:6  
在总结埋管传热理论的基础上,系统地介绍了国外关于土壤耦合热泵系统地下埋管换热器传热模型的研究进展,并给出了各传热模型的形式及其理论基础。  相似文献   

6.
Ground coupled heat pump systems can offer high energy efficiency for heating and cooling of buildings.The coupling of the ground loop with system and building represents a complex system and system performances can vary over long periods, in the range of 10-15 years due to the charge or discharge of the ground loop. In order to correctly concept, size and optimise these systems, numerical simulation is a perfect tool.The assessment of the global performance of such systems through simulation relies on several parameters, from the physical model validity to the operating conditions and control of the system. Typically, a GCHP system is simulated with a 1-h step. Transient phenomena inside the borehole are often neglected since ground models are mainly developed to characterise long term phenomena. However, detailed system simulations considering a realistic control of the system require much smaller time steps. In these cases, the validity of simulation models has to be verified.This paper proposes a hybrid approach combining experiments and simulation to highlight and quantify the impact of borehole short-time response on the system efficiency and system operation. First, a comparison between steady state and transient models as well as measurement is carried out. It reveals significant influence of dynamic effects inside the borehole. The comparison is then extended a parametric study with annual simulations for different European climates.  相似文献   

7.
基于对单井地埋管换热器的数值模拟,本文分析了地下水渗流对地埋管周围土壤温度场及传热热阻的影响.  相似文献   

8.
对某机场地源热泵系统地埋管换热器的换热性能进行了测试,计算得出了热泵机组和系统的能效比,进而评价了整个空调工程在运行阶段的能效水平.重点介绍了测试台的搭建、低温测试的主要参数.  相似文献   

9.
In this paper we investigate of energetic and exergetic efficiencies of ground-coupled heat pump (GCHP) system as a function of depth trenches for heating season. The horizontal ground heat exchangers (HGHEs) were used and it were buried with in 1 m (HGHE1) and 2 m (HGHE2) depth trenches. The energy efficiency of GCHP systems are obtained to 2.5 and 2.8, respectively, while the exergetic efficiencies of the overall system are found to be 53.1% and 56.3%, respectively, for HGHE1 and HGHE2. The irreversibility of HGHE2 is less than of the HGHE1 as about 2.0%. The results show that the energetic and exergetic efficiencies of the system increase when increasing the heat source (ground) temperature for heating season. And the end of this study, we deal with the effects of varying reference environment temperature on the exergy efficiencies of HGHE1 and HGHE2. The results show that increasing reference environment temperature decreases the exergy efficiency in both HGHE1 and HGHE2.  相似文献   

10.
以北京某宾馆污水源热泵系统中的污水换热器为研究对象,连续测试了污水、中间水以及热水流量、温度随时间的变化.根据测试数据计算得到了污水换热器换热效率的衰减情况,并拟合得到了传热系数的衰减公式,测试分析结果可为污水源热泵供热系统中的污水换热器设计和选型提供参考.  相似文献   

11.
基于层换热理论的竖直地埋管换热器设计方法   总被引:3,自引:0,他引:3  
王勇  刘方  付祥钊 《暖通空调》2007,37(9):35-39
建立了地源热泵竖直地埋管换热器的三维传热温度场数学模型,模拟计算了不同季节不同工况下地埋管换热器内的水温分布。提出了层换热理论,竖直地埋管换热器及其周围岩土可以分为三个换热层——饱和换热层、换热层、未换热层。通过实测验证了该层换热理论。介绍了地埋管换热器埋深的确定、出水管的保温及流量的确定等。  相似文献   

12.
能量桩是一种由地源热泵技术与桩基埋管换热器结合组成的经济高效节能减排技术。简要介绍了基于地源热泵技术的能量桩技术原理、桩型、埋管形式以及技术经济优势,总结了近年来国内外能量桩技术的研究现状及其工程应用,包括基于灌注桩的传热管埋管形式和基于预制桩的传热管埋管形式;指出了目前工程应用中存在的一些主要问题,并提出一种新型PCC能量桩技术及其施工工艺;最后简要分析了能量桩技术在国家节能减排工程中的应用前景,并提出有待进一步研究的方向。  相似文献   

13.
密集型桩埋换热器管群周围土壤换热特性的数值模拟   总被引:4,自引:4,他引:4  
赵军  王华军 《暖通空调》2006,36(2):11-14
以一实际地源热泵系统为例,在全年逐时负荷计算的基础上,对大面积密集型桩埋换热器管群周围土壤的换热特性进行了数值模拟。提出了土壤换热中热屏障的概念,并分析了热屏障的形成原因及其特性,即形状不规则、动态变化和危害性。长期运行中,热屏障带的温度增长速率要高于土壤平均温度的增长,建议从负荷平衡和热屏障两个角度进行分析,以保证地源热泵系统稳定可靠的运行。  相似文献   

14.
More and more efficient solutions of thermal insulation of buildings result in an increasing role of ventilation in the energy balance of buildings. This leads to a necessity for seeking unconventional heat sources, as well as development of the exhaust air heat recovery methods. The use of heat accumulating potential of the ground perfectly fits into this trend, allowing natural pre-heating and pre-cooling of the inlet air. There appears to be very limited research and published data on their thermal performance in Poland. This paper introduces a developed method of air-ground heat exchanger (AGHX) performance evaluation together with its validation and research results of conducted simulation. The AGHX model (based on a quasi 3D finite elements method) allows analysis of energy performance dependence on a wide range of parameters including AGHX geometrical configuration, mode of operation and environmental factors. The simulation results indicate that the analyzed parameters in various degrees affect the thermal efficiency of AGHX; various is also the nature of their impact. For some of them it is possible to set a value to maximize heat or cold yield (pipe diameter and placement depth, number of parallel pipes, bypass system, soil thermo-physical parameters, ground area shading and ground surface cover). In other cases, the influence of parameters has an asymptotic nature for which the maximum heating or cooling efficiency is achieved for parameter values tending to infinity (pipe length and distance between parallel pipes).  相似文献   

15.
地源热泵夏季性能测试及传热模型   总被引:4,自引:4,他引:4  
对50m深埋地下换热器地源热泵系统夏季间歇运行时的制冷性能进行了测试,分析了系统运行对地温的影响,提出采用混合系统来解决重庆地区冬夏季土壤中吸热、放热不平衡的问题,引入圆柱源理论建立了垂直U型管传热模型,模拟结果与实验结果吻合较好。  相似文献   

16.
地热换热器U型埋管的传热模型及热阻计算   总被引:10,自引:0,他引:10  
讨论了地源热泵地热换热器竖直U型埋管钻孔内的二维稳态传热模型。基于钻孔内的温度场的二维解析解,得出钻孔热阻表达式。分析了影响钻孔热阻的几个相关因素,通过与一维简化模型得到的钻孔热阻相比较,认为采用二维模型可以为工程设计提供更准确可靠的热阻数据。  相似文献   

17.
The performance of ground source heat pumps (GSHPs) depends strongly on the heat transfer between the soil and borehole heat exchangers (BHEs). In the present work, a thermal performance experiment of a BHE under groundwater flow was conducted in Baoding, China. Based on the measurement of the natural ground temperature profile, a simplified theoretical model was presented to estimate the characteristics of groundwater flow. The results showed that the presence of groundwater had an obvious influence on the temperature profile in the aquifer. Due to the strong groundwater advection, the thermal performance of the BHE was enhanced. The enhanced effect depends to a great extent on the distribution and thickness percentage of the ground layer with the greatest groundwater flow. In the present case, the heat injection and heat extraction of the BHE were enhanced on average by 9.8% and 12.9%, respectively, compared with the case without groundwater flow, when the total thickness of coarse sand and gravel layer as a percentage of the borehole depth was 10.6%. This enhanced effect is favorable for reducing the possible imbalance between heat injection and extraction from and to the ground, which is helpful for the long-term operation of GSHP systems.  相似文献   

18.
地埋管换热器的优越性能在当今社会越来越受到重视,在供暖、烘干、能源互补利用方面有广阔的前景。本文基于TRNSYS软件建立上海某建筑的模型系统设计,并介绍了建筑负荷模拟的过程、冷却塔串联和并联方式的模拟计算。针对上海的天气情况、土壤源温度的变化作为原始变量进行了模拟分析,比较得出性能好方案,最后进行较好方案的继续优化。  相似文献   

19.
GeoCool plant was the result of a EU project whose main purpose was to adapt ground coupled heat pump technology to cooling dominated areas. The execution of this experimental plant was completed at the end of year 2004, starting on February 2005 the regular operation of the air conditioning system. Since then, GeoCool facility has been monitored by a network of sensors characterizing its most relevant parameters. Several aspects of the performance and behaviour of the system during its first operational year were presented on a previous paper. This paper presents the energy performance measurements of GeoCool ground coupled heat pump system acquired during five years of operation as well as the evolution of the return water temperature from the ground as a representative of the ground temperature. The analysis of the experimental results shows that the system energy performance is maintained through the years with no appreciable impact on ground thermal response.  相似文献   

20.
地源热泵垂直套管式换热器传热研究   总被引:3,自引:0,他引:3  
介绍了地源热泵的特性及其发展前景,分析了现有传热模型的局限性。在V.C.Mei传热模型的基础上,结合系统能量方程和热传导方程建立了套管式换热器的传热模型。采用有限元法和有限差分法对埋管周围的温度场进行了数值计算。通过与实测值的对比表明该传热模型能更好地反映出真实的传热过程和传热机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号