首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to evaluate and improve the design of space heating systems with groundwater source heat pumps (GWHP), common design practices should be examined. In this paper, a GWHP system with common design is studied. The COP of the heat pump is 3.5 at design condition. The system is divided into five subsystems, and exergetic cost analysis is performed on it based on structural theory of thermoeconomics. The results show that the three largest relative exergy destructions and lowest exergy efficiencies occur in power generation and distribution, heat pump, and terminal unit subsystems with relative exergy destructions of 71.2%, 17.1% and 7.02% and exergy efficiencies of 32.8%, 54.8% and 65.6% respectively. The three subsystems also have the largest increases of unit exergetic costs of 2.04 W/W, 2.15 W/W, and 2.73 W/W respectively. Therefore, designers of GWHP space heating systems should pay close attention to heat pump and terminal unit subsystems, especially to the latter one because of its larger increase of unit exergetic cost. The unit exergetic cost of the system final exergetic product is 7.92 W/W. This value can be used to evaluate the system and compare it with others from the viewpoint of energy conservation.  相似文献   

2.
Solar water heating (SWH) is a well-proven renewable energy technology and has been used in many countries of the world. The basic technology is straightforward, although there are a variety of various types of SWH systems. In the performance assessment of SWH systems, energy analysis (first law) method has been widely used, while the number of the studies on exergetic assessment is relatively low. The SWH system investigated consists of mainly three parts, namely a flat plate solar collector, a heat exchanger (storage tank) and a circulating pump. The main objectives of the present study are as follows, differing from the previously conducted ones: (i) to model and assess SWH systems using exergy analysis (second law) method as a whole, (ii) to investigate the effect of varying water inlet temperature to the collector on the exergy efficiencies of the SWH system components, (iii) to study some thermodynamic parameters (fuel depletion ratio, relative irreversibility, productivity lack and exergetic factor) and exergetic improvement potential, and (iv) to propose and present an exergy efficiency curve similar to the thermal efficiency curve for solar collectors. The system performance is evaluated based on the experimental data of the Izmir province, Turkey, which is given as an illustrative example. Exergy destructions (or irreversibilities) as well as exergy efficiency relations are determined for each of the SWH system components and the whole system. Exergy efficiency values on a product/fuel basis are found to range between from 2.02 to 3.37%, and 3.27 to 4.39% at a dead (reference) state temperature of 32.77 °C, which is an average of ambient temperatures at eight test runs from 1.10 to 3.35 p.m., for the solar collector and entire SWH system, respectively. An exergy efficiency correlation for the solar collector studied was also presented to determine its exergetic performance. It is expected that the model presented here would be beneficial to the researchers, government administration, and engineers working in the area of SWH systems for residential applications.  相似文献   

3.
An energetic and exergetic modeling of a solar-assisted vertical ground-source heat pump (GSHP) greenhouse heating system (SAGSHPGHS) for system analysis and performance assessment is presented in this study. Energy (heating coefficient of performance ‘COP’) and exergy efficiencies at various reference and entering water temperatures are also determined. The actual thermal data collected are utilized for the model calculations at different reference temperature values in the range of −0.69 to 25 °C. Furthermore, the performance of a SAGSHPGHS, installed in Solar Energy Institute of Ege University, Izmir, Turkey, is evaluated to show, how energy and exergy efficiencies values change with system. The exergy destructions in the overall SAGSHPGHS are quantified, particularly for a reference temperature of −0.69 °C on 7 January 2004 for comparison purposes. Based upon the measurements made in the heating mode from the 16th of December 2003 till 31st of March 2004, average heating COPs of the GSHP unit and the overall system are obtained to be 2.84 and 2.27, respectively. The best (peak) COP of the GSHP and system were found to be 3.14 and 2.79 on 7 January 2004, respectively. Average exergy efficiency of the system is determined to be 68.11%, while the best exergy efficiency peak values for the GSHP unit and the whole system on a product/fuel basis are obtained to be 76.2% and 75.6%, respectively.  相似文献   

4.
《Energy and Buildings》2005,37(1):101-110
Ground-source heat pumps (GSHPs), also known as geothermal heat pumps (GHPs), are recognized to be outstanding heating, cooling and water heating systems, and have been used since 1998 in the Turkish market. Greenhouses also have important economical potential in Turkey’s agricultural sector. In addition to solar energy gain, greenhouses should be heated during nights and cold days. In order to establish optimum growth conditions in greenhouses, renewable energy sources should be utilized as much as possible. It is expected that effective use of heat pumps with a suitable technology in the modern greenhouses will play a leading role in Turkey in the foreseeable future.The main objective of the present study is to investigate to the performance characteristics of a solar assisted ground-source heat pump greenhouse heating system (SAGSHPGHS) with a 50 m vertical 1 × 1/4 in. nominal diameter U-bend ground heat exchanger using exergy analysis method. This system was designed and constructed in Solar Energy Institute of Ege University, Izmir, Turkey. The exergy transports between the components and the destructions in each of the components of the SAGSHPGHS are determined for the average measured parameters obtained from the experimental results. Exergetic efficiencies of the system components are determined in an attempt to assess their individual performances and the potential for improvements is also presented. The heating coefficient of performances of the ground-source heat pump unit and the overall system are obtained to be 2.64 and 2.38, respectively, while the exergetic efficiency of the overall system is found to be 67.7%.  相似文献   

5.
In this paper we investigate of energetic and exergetic efficiencies of ground-coupled heat pump (GCHP) system as a function of depth trenches for heating season. The horizontal ground heat exchangers (HGHEs) were used and it were buried with in 1 m (HGHE1) and 2 m (HGHE2) depth trenches. The energy efficiency of GCHP systems are obtained to 2.5 and 2.8, respectively, while the exergetic efficiencies of the overall system are found to be 53.1% and 56.3%, respectively, for HGHE1 and HGHE2. The irreversibility of HGHE2 is less than of the HGHE1 as about 2.0%. The results show that the energetic and exergetic efficiencies of the system increase when increasing the heat source (ground) temperature for heating season. And the end of this study, we deal with the effects of varying reference environment temperature on the exergy efficiencies of HGHE1 and HGHE2. The results show that increasing reference environment temperature decreases the exergy efficiency in both HGHE1 and HGHE2.  相似文献   

6.
This study presents energy and exergy analyses and sustainability assessment of one novel and three conventional types of air cooling systems for building applications. First, effectivenesses of the systems are determined using energy analysis method. Second, exergy aspects of the systems are investigated for twelve different dead state temperatures varying from −5 °C to 50 °C with a temperature interval of 5 °C. The specific exergy flows of humid air, dry air and water, exergy efficiency, and specific exergy destruction are then calculated. Sustainability index is also used to define and discuss the systems’ sustainability aspects. Finally, the results obtained here show that at the dead state temperatures of higher than 23 °C (comfort temperature), exergy efficiency and sustainability of the novel system, which is based on the novel Maisotsenko cycle (M-Cycle), is higher than those of the conventional systems. At a dead state temperature of 50 °C, novel cooling system's exergy efficiency can reach 60.329% as the maximum, while the minimum exergy efficiency of other conventional cooling systems becomes as low as 35.866%, respectively.  相似文献   

7.
This study deals with the energetic and exergetic modeling of ground source heat pump (GSHP) systems for the system analysis and performance assessment. The analysis covers two various GSHPs, namely a solar assisted vertical GSHP and horizontal GSHP. The performances of both GSHP systems are evaluated using energy and exergy analysis method based on the experimental data. Energy and exergy specifications are also presented in tables. Some thermodynamic parameters, such as fuel depletion ratio, relative irreversibility, productivity lack and exergetic factor, are investigated for both systems. The results obtained are discussed in terms of energetic and exergetic aspects. The values for COPHP ranged from 3.12 to 3.64, while those for COPsys varied between 2.72 and 3.43. The exergy efficiency peak values for both whole systems on a product/fuel basis were in the range of 80.7% and 86.13%. It is expected that the model presented here would be beneficial to everyone dealing with the design, simulation and testing of GSHP systems.  相似文献   

8.
This investigation deals with an exergoeconomic evaluation of the earth to air heat exchanger (EAHE) application for determining the optimal design greenhouse heating in Izmir, Turkey. The exergy destructions in the system are quantified and illustrated using tables for a reference temperature of 6 °C. The results indicate that the exergy destructions in the system occur primarily as a result of blower losses and heat exchanger losses. These average losses account for 85% and 4.5%, respectively. Both COP and exergy efficiency of the overall system was investigated to analyze and improve the systems performance. The average COP and exergetic efficiency were determined to be 10.51 and 89.25%, respectively. The results may provide useful insights into the relations between thermodynamics and economics for the EAHE heating systems.  相似文献   

9.
A new type of air conditioning system, the liquid desiccant evaporation cooling air conditioning system (LDCS) is introduced in this paper. Desiccant evaporation cooling technology is environmental friendly and can be used to condition the indoor environment of buildings. Unlike conventional air conditioning systems, the system can be driven by low-grade heat sources such as solar energy and industrial waste heat with temperatures between 60 and 80 °C. In this paper, a LDCS, as well as a packed tower for the regenerator and dehumidifier is described. The effects of heating source temperature, air temperature and humidity, desiccant solution temperature and desiccant solution concentration on the rates of dehumidification and regeneration are discussed. Based on the experimental results, mass transfer coefficients of the regeneration process were experimentally obtained. The results showed that the mean mass transfer coefficient of the packing regenerator was 4 g/(m2 s). In the experiments of dehumidification, it was found that there was maximal tower efficiency with the suitable inlet humidity of the indoor air. The effective curves of heating temperature on the outlet parameters of the regenerator were obtained. The relationships of regeneration mass transfer coefficient as a function of heating temperature and desiccant concentration are introduced.  相似文献   

10.
The main objective of this study is to investigate the energetic and exergetic performances of a latent energy storage system in both charging (solidification) and discharging (melting) processes. A shell-and-tube TES unit was designed, constructed and tested in Dokuz Eylul University, Izmir, Turkey. This experimental unit basically consisted of a heat exchanger section, a measurement system and flow control systems. For the charging mode, the inlet temperatures varied to be −5 °C, −10 °C and −15 °C, while the volumetric flow rates changed to be 2 l/min, 4 l/min and 8 l/min. The experiments were performed for three different tube materials, copper, steel and PE32 and two various shell diameters of 114 mm and 190 mm to investigate the tube material and shell diameter effects on energetic and exergetic efficiencies. It may be concluded that for the charging period, the exergetic efficiency increased with the increase in the inlet temperature and flow rate. For discharging period, irreversibility increased as the temperature difference between the melting temperature of the PCM and the inlet temperature of the heat transfer fluid (HTF) increased and hence the exergy efficiency increased.  相似文献   

11.
This study deals with exergetic assessment of an educational building heated by a conventional boiler in a heating center. The heating system is examined from the generation stage to the envelope of the building. In general the heat loss calculations are made using both energy and exergy analysis methods. The energy and exergy flows between the stages are obtained using a pre-design tool for an optimized building design. Energy and exergy losses are obtained to evaluate the performance of the system. A conventional boiler in the heating center and a fan coil unit in a room are considered in the analysis. Total exergy input rate is calculated to be 694.5 kW, while the largest exergy loss rate is obtained to be 333 kW. Exergetic efficiencies of the conventional boiler and the fan coil unit are also found to be 13.4% and 37.6%, respectively.  相似文献   

12.
In this paper, an ideal liquid desiccant dehumidification system is presented as the idealization of practical liquid desiccant dehumidification systems, along with an exergy analysis that considers the effects of various parameters like dehumidification temperature, water vapor pressure and temperature of surrounding environment on the system performance. Exergy formulations are developed and validated for the ideal system. These results show that the ideal system is strongly influenced by these impact factors, with respect to operating condition and exergy efficiency, and should be used with caution when comparing with condensation-based dehumidification systems.  相似文献   

13.
Turning off the electric lamp during available daylight will save electricity, while at the same time thermal energy from solar radiation transmitted through the window will increase the space-cooling load. Therefore, it is necessary to evaluate the whole system that includes not only the room space with the windows and the electric lighting systems, but also the air conditioning system. For analysis of the whole system using different types of energy (i.e. electricity, solar radiation, light emitted by lamps and thermal energy), it is important to take into account the quality of these different types of energy. The concept of entropy and exergy were applied in this analysis. The purpose of this study is to show the energy use for daylighting, electric lighting, and space cooling systems as a series of exergy input, output, and consumption and reveal how a daylighting system consumes solar exergy and how electric lighting and space cooling systems consume exergy from fossil fuel. The methodology to calculate the exergy consumption of the system during a given time was developed first. This method was then applied to the lighting and cooling for a typical room. The study found that electric lighting consumes the lowest amount of exergy while the space cooling consumes the highest amount of exergy for the system.  相似文献   

14.
《Energy and Buildings》2005,37(5):493-501
Thermal driven desiccant assisted air conditioning systems make use of waste heat to dehumidify humid outside air in a desiccant wheel. Within the scope of a research project, an investigation of a desiccant assisted air conditioning system was carried out, and a demonstration plant was built in an office building in Hamburg, Germany. The HVAC system consists of a small CHP-plant, a desiccant assisted ventilation system and an earth energy system (borehole heat exchangers) for cooling instead of an electric driven compression chiller. The radiant floor heating system of the building is used for cooling. In this paper, measurement results and investigations of performance, energy demand and operating costs will be presented. It was found that considerable primary energy savings can be achieved (70%) using desiccant air conditioning with borehole heat exchangers. But even if electric chiller is used, savings of 30% in primary energy can be accomplished. Starting costs for the demonstration plant were not higher than for a conventional system, but running costs could be reduced drastically.  相似文献   

15.
This paper presents an application of an exergoeconomic model, through exergy and cost accounting analyses, to the Gonen geothermal district heating system (GDHS) in Balikesir, Turkey for the entire system and its components. This exergoeconomic model is used to reveal the cost formation process and the productive interaction between components. The exergy destructions in the overall Gonen GDHS are quantified and illustrated for a reference temperature of 4 °C. The results indicate that the exergy destructions in the system occur primarily as a result of losses in the cooled geothermal water injected back into the reservoir, pumps, heat exchangers, and pipelines. Total exergy destruction and reinjection exergy of the cooled geothermal water result in 1010 kW (accounting for 32.49%), 320.3 kW (accounting for 10%) of the total exergy input to the Gonen GDHS, respectively. Both energy and exergy efficiencies of the overall Gonen GDHS are also investigated to analyze the system performance, as these efficiencies are determined to be 42% and 50%, respectively. It is found that an increase of the load condition leads to a decrease in the overall thermal costs, which will result in more cost-effective energy systems for buildings.  相似文献   

16.
The present study deals with the exergetic modeling and performance evaluation of solar assisted domestic hot water tank integrated ground-source heat pump (GSHP) systems for residences for the first time to the best of the author's knowledge. The model is applied to a system, which mainly consists of (i) a water-to-water heat pump unit (ii) a ground heat exchanger system having two U-boreholes with an individual depth of 90 m, (iii) a solar collector system composing of rooftop thermal solar collectors with a total surface area of 12 m2, (iv) a domestic hot water tank with a electrical supplementary heater, and (v) a floor heating system with a surface of 154 m2, and (vi) circulating pumps. Exergy relations for each component of the system and the whole system are derived for performance assessment purposes, while the experimental and assumed values are utilized in the analysis. Exergy efficiency values on a product/fuel basis are found to be 72.33% for the GSHP unit, 14.53% for the solar domestic hot water system and 44.06% for the whole system at dead (reference) state values for 19 °C and 101.325 kPa. Exergetic COP values are obtained to be 0.245 and 0.201 for the GSHP unit and the whole system, respectively. The greatest irreversibility (exergy destruction) on the GSHP unit basis occurs in the condenser, followed by the compressor, expansion valve and evaporator.  相似文献   

17.
Existing desiccant cooling systems reduce the temperature of process air either by adopting evaporative coolers or incorporating vapor compression systems. While the former is restricted by inaccurate control, the latter still consumes certain quantity of electric power. To solve this problem, a thermally driven air conditioning system, which combines the technologies of rotary desiccant dehumidification and regenerative evaporative cooling, has been proposed and investigated. In addition to dehumidification, the system is capable of producing chilled water, thereby realizing separate temperature and humidity control without increasing electrical load. To find out the characteristics of produced chilled water and evaluate the feasibility and energy saving potential of this novel system, a mathematical model has been developed. Case studies have been conducted under Air conditioning and Refrigeration Institute (ARI) summer, ARI humid and Shanghai summer conditions. It is found that the system can achieve a thermal COP higher than 1.0 and an electric COP about 8.0. The temperature of chilled water produced by the system is around 14–20 °C. This chilled water can be used with capillary tube mats for radiant cooling. It is suggested that the system can also be designed as a standalone chilled water plant. As a desiccant dehumidification-based chilled water producing technology, this would expand desiccant cooling to a boarder niche application. The effects of chilled water flow rate, air distribution ratio, inlet air conditions and regeneration temperature have been analyzed in detail. Reachable handling regions, which will be helpful to system design and optimization, have been obtained.  相似文献   

18.
In this study, a building with a volume of 351 m3 and a net floor area of 117 m2 is considered as a case study with the indoor and exterior air temperatures of 20 and 0 °C, respectively. For the heating applications, four options are studied with (1) a heat pump, (2) a condensing boiler, (3) a conventional boiler and (4) a solar collector, which are driven by renewable and non-renewable energy sources. An energy and exergy analysis is employed to assess their performances and compare them through energy and exergy efficiencies and sustainability index. Energy and exergy flows are investigated and illustrated. Also, the energetic and exergetic renewability ratios are utilized here along with sustainability index. The results show that overall exergy efficiencies of heat pump, condensing boiler, conventional boiler and solar heating systems are found to be 3.66, 3.31, 2.91, and 12.64%, while the sustainability index values for the four cases considered are calculated to be 1.039, 1.034, 1.030 and 1.144, respectively. So, solar collector-based heating system gives the highest efficiency and sustainability index values.  相似文献   

19.
The cumulative exergy approach is applied to evaluate two cases with different air conditioning systems. The first case includes three air conditioning systems, one is the gas direct fired air conditioning system, and the other two have air cooled heat-pump chiller and water chiller, respectively; the second case consists of four air conditioning systems, one is the gas direct fired air conditioning system, and the others have centrifugal water chiller, screw water chiller, air cooled water chiller, respectively. The results of the first case show that the air conditioning system with the air cooled heat-pump chiller maybe inferior to that with the water chiller, as the cumulative exergy efficiency of the former is 11.28%, which is less than that of the latter (11.92%). The second case shows that the gas direct fired air conditioning system, whose cumulative exergy efficiency is 14.86%, is better than the system with the air cooled water chiller, whose cumulative exergy efficiency is only 11.56%. The results are different from those of the exergy analysis, indicating that cumulative exergy analysis is an effective method to quantitatively evaluate different air conditioning systems according to resource utilization.  相似文献   

20.
大型客车发动机冷却系统与除湿供冷联用的空调系统   总被引:3,自引:0,他引:3  
陈沛霖  张旭 《暖通空调》2002,32(4):53-55
介绍了除湿供冷系统的工作原理,探讨了大型客车发动机冷却系统与除湿供冷联用的空调系统的组合形式和工作过程,根据国外资料分析了此项技术的技术经济性能以及在我国的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号