首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites have been prepared by solid-state reactions at a temperature of 1073 K. X-ray diffraction data indicate that, in the Bi2–хLaхFe4O9 system, the limiting degree of La3+ substitution for Bi3+ ions in Bi2Fe4O9 does not exceed 0.05 and that the limiting degree of substitution in the Bi2Fe4–2xTixCoxO9 system lies in the range 0.05 < x < 0.1. The specific magnetization and specific magnetic susceptibility of the samples have been measured at temperatures from 5 to 300 K in a magnetic field of 0.86 T. The field dependences of magnetization obtained for the Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites at temperatures of 300 and 5 K demonstrate that partial isovalent substitution of La3+ for Bi3+ ions in Bi2Fe4O9 and heterovalent substitution of Ti4+ and Co2+ ions for two Fe3+ ions leads to partial breakdown of the antiferromagnetic state and nucleation of a ferromagnetic state.  相似文献   

2.
Barium hexagonal ferrites (BaNd x Fe12?x O 19) have been synthesized by initial high-energy milling of the precursors and calcining subsequently. The as-prepared samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). XRD and SEM examinations reveal that a high-crystallized hexagonal BaNd x Fe12?x O 19 with lamellar morphology is obtained when the precursor is calcined at 1200°C in air for 3 h. The hexagonal crystalline structure of BaFe12 O 19 is not changed after doping Nd3+ ions in BaFe12 O 19. However, lattice parameters a and b values increase with an increase in Nd content at first, then decrease. Nd substitution may improve the magnetic properties of BaNd x Fe12?x O 19. BaNd0.1Fe11.9 O 19, obtained at 1050°C, has the highest specific saturation magnetization value (80.81 emu/g) and magnetic moment (16.21 μ B); BaNd0.2Fe11.8 O 19, obtained at 950°C, has the highest coercivity value, 4075.19 Oe.  相似文献   

3.
Single phase samples of Ni(Cr1?xMn x )2O4 (x = 0–0.50) were synthesized by using sol–gel route. Investigation of structural, magnetic, exchange bias and magnetization reversal properties was carried out in the bulk samples of Ni(Cr1?xMn x )2O4. Rietveld refinement of the X-ray diffraction patterns recorded at room temperature reveals the tetragonal structure for x = 0 sample with I41/amd space group and cubic structure for x ≥ 0.05 samples with \( {\text{Fd}\bar{3}\text{m}} \) space group. Magnetization measurements show that all samples exhibit ferrimagnetic behavior, and the transition temperature (TC) is found to increase from 73 K for x = 0 to 138 K for x = 0.50. Mn substitution induces magnetization reversal behavior especially for 30 at% of Mn in NiCr2O4 system with a magnetic compensation temperature of 45 K. This magnetization reversal is explained in terms of different site occupation of Mn ions and the different temperature dependence of the magnetic moments of different sublattices. Study of exchange bias behavior in x = 0.10 and 0.30 samples reveals that they exhibit negative and tunable positive and negative exchange bias behavior, respectively. The magnitudes of maximum exchange bias field of these samples are found to be 640 and 5306 Oe, respectively. Exchange bias in x = 0.10 sample originates from the anisotropic exchange interaction between the ferrimagnetic and the antiferromagnetic components of magnetic moment. The tunable exchange bias behavior in x = 0.30 sample is explained in terms of change in domination of one sublattice moment over the other as the temperature is varied.  相似文献   

4.
BiY2Cr x Fe5?x O12 (x = 0, 0.05, 0.1, 0.2, 0.3) nanocrystals were synthesized by using a sol-gel method. Samples were characterized by the powder X-ray diffraction (XRD), the thermal gravity analysis (TGA) and the differential thermal analysis (DTA), the vibrating sample magnetometer(VSM) and Mössbauer spectrums. The average sizes of the particles were determined by the Scherrer’s formula. The special Ms and Mössbauer spectra of BiY2Cr x Fe5?x O12 nanocrystals are researched at room temperature. It is seen that the special Mss of samples are initially increased with increasing Cr3+ content (x < 0.1), and decreased with increasing content of Cr3+ ions (x > 0.1).  相似文献   

5.
In this paper, we report an ultralow thermal conductivity and a high-temperature phase stability of the (Nd1?x Ce x )2Zr2O7+x system over the temperature range from room temperature to 1600 °C and over a wide composition range (0.2 ≤ x ≤ 0.8), and the (Nd1?x Ce x )2Zr2O7+x system is therefore considered a strong candidate material for the fabrication of next-generation high-temperature thermal barrier coatings. The observed thermal conductivities (0.65–1.0 W/mK) are about 60–40% lower than those of undoped Nd2Zr2O7 over the same temperature range (100–700 °C) and indicate a glass-like behavior. For comparison, the variation in the thermal conductivity with the temperature of the (Gd1?x Ce x )2Zr2O7+x system with similar point defects was also measured, and the observed behavior was almost the same as that of undoped Gd2Zr2O7 and was mostly determined by phonon–phonon scattering (λ ∝ 1/T). The effect of point defect scattering and strong phonon scattering sources (rattlers) on the thermal conductivity is also discussed in this paper. The results of this study suggest that the ultralow thermal conductivity of (Nd1?x Ce x )2Zr2O7+x can be attributed to the presence of rattlers because of the large difference between the ionic radii of the Nd3+ and Ce4+ ions.  相似文献   

6.
In order to obtain high temperature coefficient of resistance (TCR) value of La0.67Ca0.33MnO3:Ag x (LCMO:Ag x ) composites, samples with different Ag contents (x?=?0, 0.1, 0.2, 0.25, 0.3, and 0.5) were prepared by sol–gel method. X-ray diffraction analyses indicated that all samples had orthorhombic perovskite structures. As x increased, lattice parameters (a, b, c) and cell volumes underwent slight expansions. Interestingly, the addition of Ag dramatically affected TCR and magneto-resistance (MR) values. Elevated TCR value up to 53.46%·K?1 at 277 K was observed for LCMO:Ag x composites with added Ag at the composition of x?=?0.1. Meanwhile, MR value at 263 K reached 71% at the magnetic field of 1 T for samples with Ag composition of x?=?0.25. The increase in Mn4+/Mn3+ ratio and improvement in crystallization caused by added Ag was found responsible for the elevated values of TCR, MR, and Tp. These findings may have practical use in high-performance magneto-resistive manganites.  相似文献   

7.
Sm3+-activated NaSrPO4 phosphors could be efficiently excited at 403 nm, and exhibited a bright red emission mainly including four wavelength peaks of 565, 600, 646 and 710 nm. The highest emission intensity was found for NaSr 1?x PO4: xSm3+ with a composition of x = 0.007. Concentration quenching was observed as the composition of x exceeds 0.007. The decay time values of NaSr1?x PO 4 : xSm3+ phosphors range from around 2.55 to 3.49 ms. NaSr1?x PO4: xSm3+ phosphor shows a higher thermally stable luminescence and its thermal quenching temperature T 50 was found to be 350°C, which is higher than that of commercial YAG:Ce3+ phosphor and ZnS:(Al, Ag) phosphor. Because NaSr1?x PO4: xSm3+ phosphor features a high colour-rendering index and chemical stability, it is potentially useful as a new scintillation material for white light-emitting diodes.  相似文献   

8.
Lead-free (K0.5Na0.5)(Nb1-xGe x )O3 (KNN-xGe, where x = 0-0.01) piezoelectric ceramics were prepared by conventional ceramic processing. The effects of Ge4+ cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nb5+ ions as acceptors, and the Curie temperature (TC) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN-xGe ceramics was 1020°C. Ge4+ doping less than 0.4 mol.%can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN-xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d33 = 120 pC/N, planar electromechanical coupling coefficient kp = 34.7%, mechanical quality factor Qm = 130, and tanδ = 3.6%.  相似文献   

9.
A series of Gd11–xy Yb x Er y GeP3O26 germanate phosphates differing in the ratio of the Yb3+ and Er3+ active ions have been synthesized, and their luminescence spectra have been measured. According to X-ray diffraction characterization results, all of the synthesized germanate phosphates are single-phase and have a triclinic structure (sp. gr. P1). We have measured upconversion luminescence spectra due to the Er3+ 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 radiative transitions in the synthesized gadolinium ytterbium erbium germanate phosphates and determined the luminescence upconversion energy yield (B en) in Gd11–xy Yb x Er y GeP3O26. The effects of the concentrations and ratio of the dopants in the Gd11(GeO4)(PO4)3O10 germanate phosphate host on B en and the ratio of the luminescence intensities in the red and green spectral regions (R/G) have been assessed.  相似文献   

10.
Novel green-emitting piezoelectric ceramics of SrBi4?x Er x Ti4O15 (SBT-xEr) were prepared. Strong up-conversion with bright green (524 and 548 nm) and a relatively weak red (660 nm) emission bands were obtained under 980 nm excitation at room temperature, which is attributed to the intra 4f–4f electronic transition of (2H11/2, 4S3/2)–4I15/2 and the transition from 4F9/2 to 4I15/2 of Er3+ ions, respectively. Simultaneously, Er3+ doping promotes the electrical properties. At 0.8 mol%Er, the optimal electric properties with high Curie temperature of T c?~527?°C, large remanent polarization of 2P r?~14.92 μC/cm2 and piezoelectric constant of d 33?~17 pC/N was achieved. As a multifunctional material, Er3+ doped SBT showed a great potential to be used in 3D-display, bio-imaging, solid state laser and optical temperature sensor.  相似文献   

11.
Nanopowders of La 1?x Bi x Co0.6Fe0.4O3 (x = 0, 0.1, 0.2) and La 1?2x Bi x Sr x Co0.6Fe0.4O3 (x = 0.1) multinary perovskites were synthesized by citrate sol–gel autocombustion method. Crystalline phase and the lattice parameters were obtained from X-ray diffraction pattern. The XRD result shows that all compounds have rhombhohedral crystal structure with \(\bar {\mathbf {R}\mathbf {3}}\)c space group and Bi (x = 0.2) have the presence of secondary peaks. Crystallite size, dislocation density, specific area and strain were calculated from XRD. The elemental composition and micrographs of grain were obtained from EDAX (energy dispersive X-ray analysis) and SEM (scanning electron microscopy), with an average grain size below 400 nm. Surface morphological studies using XPS (X-ray photoelectron spectroscopy) were used to find out the chemical states and surface proportion of oxygen present in samples. Finally, using the vibrating sample magnetometer the room temperature magnetic behaviour of compounds was studied and it was observed that the ferromagnetic behaviour of LaCo0.6Fe0.4O3 was reduced by Bi and Sr doping.  相似文献   

12.
Stable BiCl3-containing solutions of phosphorus oxychloride, activated with UO 2 2+ and Nd3+ ions, can be prepared only in the presence of another Lewis acid MCl x . The electronic absorption spectra of the liquids prepared and the decay times of the Nd3+ luminescence are characteristic of individual solutions based on POCl3-MCl x . The radiation-chemical yield of Nd3+ in the excited state 4 F 3/2 in POCl3-BiCl3-MCl x -235UO 2 2+ -Nd3+ solutions upon homogeneous excitation with uranium α-particles is lower than in POCl3-MCl x -235UO 2 2+ -Nd3+ solutions at comparable component concentrations. Apparently, Bi3+ in solutions based on the POCl3-BiCl3-MCl x system is not incorporated in neodymium- and/or uranyl-containing complexes and remains in the matrix.  相似文献   

13.
A series of In3+-doped Ba0.85Ca0.15TiO3:0.75%Er3+/xIn3+ (BCT:Er/xIn) lead-free piezoelectric ceramics with excellent upconversion luminescence were synthesized by the solid state reaction method. The effects of In3+ content on the crystal structure, ferroelectric, dielectric, piezoelectric, and upconversion luminescence properties were systematically studied. Under 980 nm excitation, a giant enhancement of the green emission (550 nm) by 10 times is achieved upon 2.5% mol In3+ doping, which is rarely observed in rare-earth ions-doped perovskite ferroelectric materials. The ultraviolet-visible-near infrared absorption measurements show that the In3+ doping may improve the dissolution of Er3+ ions and modify the isolate-/clustered-Er3+ ratio for x?≤?2.5%, resulting in the enhancement of the absorption cross-section, thereby contributing to the enhancement of green luminescence. Unfortunately, the In3+ doping suppresses the ferroelectric and piezoelectric properties of the BCT:Er/xIn ceramics. This problem can be resolved by adding a small amount (1 mol%) of Yb3+ to the BCT:Er/xIn ceramics to restore their good ferroelectric and piezoelectric properties. Such In3+ and rare-earth ions co-doped ceramics with greatly enhanced upconversion luminescence and good ferroelectricity and piezoelectricity may have potential applications in electro-optical devices.  相似文献   

14.
In this work, we studied in detail the magnetic and magnetocaloric properties of the La0.7Ca0.2Ba0.1MnO3 compound according to the phenomenological model. Based on this model, the magnetocaloric parameters such as the maximum of the magnetic entropy change ΔS M and the relative cooling power (RCP) have been determined from the magnetization data as a function of temperature at several magnetic fields. The theoretical predictions are found to closely agree with the experimental measurements, which make our sample a suitable candidate for refrigeration near room temperature. In addition, field dependences of \({{\Delta } S}_{\mathrm {M}}^{\max }\) and RCP can be expressed by the power laws \({\Delta S}_{\mathrm {M}}^{\max }\approx a\)(μ 0 H) n and RCP ≈b(μ 0 H) m , where a and b are coefficients and n and m are the field exponents, respectively. Moreover, phenomenological universal curves of entropy change confirm the second-order phase transition.  相似文献   

15.
Magnetic entropy change (?ΔS M ) of Nd0.67 Ba0.33Mn0.98Fe0.02O3 perovskite have been analyzed by means of theoretical models. An excellent agreement has been found between the (ΔSM) values estimated by Landau theory and those obtained using the classical Maxwell relation. In order to estimate the spontaneous magnetization M s pont(T), we used the mean-field theory to analyses the (ΔSM) vs. M 2 data. The obtained M s pont(T) values are in good agreement with those found from the classical extrapolation from the Arrott plots(H/M vs. M 2), confirming that the magnetic entropy is a valid approach to estimate the spontaneous magnetization in our system. At a relatively low magnetic field, a phenomenological model has been used to estimate the values of the magnetic entropy change. The results are in good agreement with those obtained from the experimental data using Maxwell relation.  相似文献   

16.
Perovskites of the compositions xLa2O3·Al2O3 and xLa2O3·Fe2O3 were prepared by cold pressing and sintering at temperatures of up to 1500°C, and their properties were studied. Perovskites based on lanthanum aluminate are more porous than those based on lanthanum ferrite, whereas the rate of radionuclide leaching from the former compounds is lower than from the latter compounds. The parameter x varied in a relatively wide range does not affect the leaching rate.  相似文献   

17.
As part of a search for new spintronic materials, we have studied the magnetic properties of the CuGa0.94Mn0.06Te2 chalcopyrite solid solution in the range 2–400 K in weak and strong magnetic fields. Magnetization isotherms, σ(H), were obtained in magnetic fields of up to 3980 kA/m. σ(T) data were collected in two ways: the sample was cooled in a magnetic field or in zero field. The experimental data were analyzed by fitting to the Langevin function. The data are adequately represented by this relation in the case when the magnetic moment of the clusters is μcl = 23.4μB and the concentrations of magnetic clusters and noninteracting Mn2+ ions are n cl = 2.4 × 1025 m?3 and n pm = 5.7 × 1025 m?3, respectively. The calculated average cluster size is d cl = 33 Å, the number of Mn2+ ions per cluster is z = 21 atoms per cluster, and the magnetic moment per Mn2+ ion in the clusters is μMn = 1.1μB. This μMn value is far below the theoretical magnetic moment of the Mn2+ ion in the electronic configuration d 5(5.9μB), suggesting antiferromagnetic exchange interaction.  相似文献   

18.
In this work, we are going to show the method based on mean-field scaling for the Nd0.6Sr0.3Ca0.1Mn0.975Fe0.025 O3 sample, where from scaling of experimental magnetization data, the mean-field exchange parameter λ and the f function of the equation of state \(M(T,H)=B_{S} [\frac {\left ({H+H_{\text {ex}}} \right )}{T}]\) are directly determined. The scaling approach allows finding the dependence of H ex on T or higher powers of M, which determine the order of the phase transition. Quantum spin number has been determined. In this study, we use \(\left | {\Delta S_{M} (T)} \right |\) obtained from isothermal magnetization measurements; we compare this result to mean-field theory fittings from a novel scaling method through the use of theoretical results S, g, and λ. The obtained results by mean-field theory are suitable and in good agreement with the classical Maxwell relation.  相似文献   

19.
Multiferroic properties of La-modified four-layered perovskite Bi5?x La x Fe0.5Co0.5Ti3O15 (0 ≤ x ≤ 1) ceramics were investigated, by analyzing the magnetodielectric effect, magneto-polarization response and magnetoelectric conversion. X-ray diffraction indicated the formation of pure Aurivillius ceramics, and Raman spectroscopy revealed the Bi ions displacement and the crystal structure variation. The enhancement of ferromagnetic and ferroelectric properties was observed in Bi5?x La x Fe0.5Co0.5Ti3O15 after La modification. The evidence for enhanced ME coupling was determined by magnetic field-induced marked variations in the dielectric constant and polarization. A maximum ME coefficient of 1.15 mV/cm·Oe was achieved in Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramic, which provides the possible promise for novel magnetoelectric device application.  相似文献   

20.
Sr1?x Nd x TiO3 (x?=?0.08–0.14) ceramics were prepared by conventional solid-state methods. The analysis of crystal structure suggested Sr1?x Nd x TiO3 ceramics appeared to form tetragonal perovskite structure. The relationship between charge compensation mechanism, microstructure feature and microwave dielectric properties were investigated. Trivalent Nd3+ substituting Sr2+ could effectively decrease oxygen vacancies. This reduction and relative density were critical to improve Q?×?f values of Sr1?x Nd x TiO3 ceramics. For ε r values, incorporation of Nd could restrain the rattling of Ti4+ cations and led to the reduction of dielectric constant. The τ f values were strongly influenced by tilting of oxygen octahedral. The τ f values decreased from 883 to 650 ppm/°C with x increasing from 0.08 to 0.14. A better microwave dielectric property was achieved for composition Sr0.92Nd0.08TiO3 at 1460 °C: ε r ?=?160, Q?×?f?=?6602 GHz, τ f ?=?883 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号